Contents

Preface

NSK Commemorates its Centennial ... H. Aramaki 1

Technical Articles

- Advanced Technology for Lubricant Film Formation by Grease and Application to Improve Bearing Wear Resistance under Severe Conditions ... M. Hokao, A. Yokouchi, K. Konno 2
- White Structure Flaking in Rolling Bearings for Wind Turbine Gearboxes H. Yamada, H. Uyama 6
- Development of New-Type Oxide Ceramic Ball for Bearings Y. Endo, Y. Shimizu, K. Ueda 15
- Correlations Between the Porosity and Friction Performance of Wet Friction Materials .. T. Hiramoto, K. Iso 18
- Development of a High-Power Two-Roller Traction Tester and Traction Curve Measurement ... H. Itagaki, M. Kita, H. Hashiguchi 23
- New Technologies for Bearings in Electric Vehicle and Hybrid Electric Vehicle Powertrains ... T. Oshima, S. Masuda 32
- NSK EPS Control Technology .. S. Shimokawabe, T. Kitazume 47
- Development of High-Speed, High-Power Spindles With Automatic Grease Replenishment ... S. Oguri, Y. Inagaki, O. Iwasaki 54
- Development of a High-Precision Vertical-Axis Table ... T. Sato 62

New Products

- Ball Bearings with Excellent Sealing Performance for Fan Clutches 66
- New Ball Bearing with a Retainer Plate for Automobile Transmissions 68
- The World's Lightest Electric Power Steering System ... 70
- spaceaCRYO: New High-Performance Ceramic Ball Bearings for Liquefied Gas Pumps ... 72
- Spherical Roller Bearings Featuring High Reliability and Excellent Sealing Performance for Conveyor Pulleys in Mines ... 74
- Ball Bearings for Ultra-High-Speed Rotary Motors ... 76
- ROBUSTSHOT Bearings: Direct Lubrication Angular Contact Ball Bearings for Machine Tool Spindles .. 78
- Ultra-Large Ball Screws ... 80
NSK Commemorates its Centennial

Hirotsushi Aramaki
Executive Vice President
NSK TECHNICAL JOURNAL Editor

NSK commemorated its centennial in November 2018. Reflecting on our anniversary, I would like to take this opportunity to express my sincere appreciation to partners, senior colleagues, and old friends who have extended their continued guidance, cooperation, and other support in the advancement of our products and R&D activities.

Our magazine NSK BEARING JOURNAL was first published in early 1954, a time when Japan’s economy had recovered to prewar levels and its rapid economic growth was set to begin. Against this backdrop, the then president of NSK in his message in the first issue stressed the importance of analyzing, systematizing, and theorizing in various areas by forming a trinity among manufacturers, researchers, and consumers while honoring creativity and autonomy in scientific culture. The first issue of the publication included articles on bearings used in the automotive and rail sectors while also providing information about technologies that at the time were integral to the expansion of Japan’s transport infrastructure. In 1986, in response to the rapidly broadening scope of our product technologies, the magazine was renamed NSK TECHNICAL JOURNAL, of which there have been 99 issues. The English version, Motion & Control, was first published in 1996 and has been printed 38 times. In those days, the publication carried with it our mission to introduce NSK’s technological achievements, not only products but systematized and theorized technologies as well. Moreover, we made an effort to provide information that deepened understanding of our products and have remained committed to editing the content in such a way that it can be valuable in academic activities.

Personally, I want the magazine to benefit all readers on many levels.

Since joining NSK in 1984, I have been involved primarily in R&D. In the 80s, computer technologies were being developed rapidly, but the speed of technological evolution is now faster and more diversified than ever before. We live in an era of great change, often represented by such advancements as Industry 4.0, IoT, AI, and automated driving. Conversely, we are faced with a myriad of unresolved issues across the world, including global warming, population-related problems, resource depletion, and matters affecting the supply of food. We must therefore renew our resolve in order to contribute to society through our technological innovation while at the same time continuing to share our findings with you.

Hirotsushi Aramaki
Advanced Technology for Lubricant Film Formation by Grease and Application to Improve Bearing Wear Resistance under Severe Conditions
Michita Hohao, Atsushi Yokouchi, and Katsuhiro Konno NSK Ltd.

Abstract
The effects of thickener composition of grease on the oil film formation was investigated with optical interferometry under low speed and high load conditions. As a result, a new thicker composition of grease was revealed, which improves the oil film thickness and flow properties of grease. This knowledge was applied in the development of bearings, and under severe low speed and high load conditions as well as water contamination, the wear resistance of the bearings improved due to increased oil film thickness of the grease.

This article has been approved for reprinting by the Proceedings of JAST Tribology Conference 2013–10, A19.

1. Introduction
It has been reported that lubricant film formation by grease in rolling contacts depends not only on base oil viscosity but also on thickener, and grease cloud forms thicker lubricant film in a low speed range than lubricating oil1). Also, Aihara et al. reported that grease is forms thicker lubricant film in a low speed range than oil viscosity but also on thickener, and grease cloud improved due to increased oil film thickness of the grease.

2. Experiment
2.1 Tested grease
Table 1 shows the properties of grease used in the test. Grease A to E were prepared by mixing, at varied rates, Grease 1 and 2, which are different thickener types, so that the worked penetration became approximately 325. Grease F, which is commercially available, was used in the comparison.

<table>
<thead>
<tr>
<th>Grease</th>
<th>Base oil</th>
<th>Thicker</th>
<th>Worked penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ether oil</td>
<td>Urea 1</td>
<td>324</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Urea 2</td>
<td>330</td>
</tr>
</tbody>
</table>

2.2 Test Method
2.2.1 Measurement of EHL oil film thickness
A ball-on-disk type tribometer with optical interferometry was used to measure grease film thickness. A glass disk and SUJ2 ball were used.

2.2.2 Measurement of inlet distance of grease
Inlet distance was measured to evaluate grease replenishment. Inlet distance was defined as the grease replenishment from tip of contact ellipse to the interface of grease and air at the contact inlet that can be observed when a ball rolls on a grease-applied glass disk. The evaluation condition was set at an initial grease application thickness of 0.2 mm, a maximum Hertzian pressure of 1 GPa, a sliding ratio of 17%, and a disk rolling speed of 0.01 m/s. The minimum inlet distance was measured over a 10-minute period.

2.2.3 Measurement of degree of separation
The oil film formation in a bearing was evaluated by the capacitance method. Degree of separation was defined as the proportion of the measured voltage to the applied voltage. By using a spherical roller bearing (inner diameter 40 mm × outer diameter 62 mm × width 17 mm), the degree of separation was measured at 2 rpm to 50 rpm.

3. Results and Discussion
3.1 Measurement of oil film thickness
Figure 1 shows the measurement results of grease film thickness and the calculated value of the base oil using the Hamrock and Dowson film thickness formula. The film thickness of each grease at a rolling speed of 1.0 m/s to 0.04 m/s decreased in correlation with decreases in rolling speed. This was also the case for the base oil of each grease. At a rolling speed of 0.03 m/s or slower, however, the film thickness decreased in the base oil, whereas grease A to E formed thicker films than that of the base oil. At a speed of 0.005 m/s or slower, Grease F formed a thicker film than that of the base oil. A report was made on the behavior of grease that forms a thicker film than that of the base oil at a certain speed or slower, and therein thickener agglomeration passed through a contact ellipse at a lower speed range1). Also, in this test, thickener agglomerations were confirmed to pass through the contact area, which indicates that the thickener in each type of grease contributed to increasing the film thickness at a speed of 0.03 m/s or slower.

Figure 2 shows the measurement results of closest inlet distance. The longer the inlet distance, the more grease that is present at the inlet conjunction, which improves grease replenishment and prevents starvation. The results for Grease A to E show that the more Urea 1 containing Grease 1 mixed at the rate of 50% or more, formed thicker films than those of Grease A and B. It was therefore confirmed that Urea 1 contributes to increasing the film thickness more than Urea 2 at a slower speed range.

From these results, it was confirmed that Urea 1 has a greater effect on the formation of oil film thickness compared to Urea 2.

3.2 Inlet distance of grease
Figure 2 shows the measurement results of closest inlet distance. The longer the inlet distance, the more grease that is present at the inlet conjunction, which improves grease replenishment and prevents starvation. The results for Grease A to E show that the more Urea 2 containing Grease 2 is mixed, the longer the closest inlet distance becomes, and the better grease replenishment. As for Grease F, replenishment was similar to that of Grease D. From these results it was confirmed that increased composition of Urea 2 improves grease replenishment.
4. Applications for Improvement of Wear Resistance

Grease C, D, and F formed thicker films than those of Grease A and B at a rolling speed of 0.03 m/s or slower, and Grease A, B, and C replenished better than Grease F. This indicates that Grease C, having formed a thicker oil film in a slow speed range with a better reflow property, is excellent in the forming of an oil film. Grease C1 was subsequently prepared by mixing additives with Grease C so that the film formation property and wear resistance of grease in the bearing could be evaluated. A test condition emulated steel manufacturing facilities, where bearings are used under low speed and high load conditions.

The measurement results for degree of separation, shown in Figure 3, indicate that the higher the separation degree, the less metal contact there is in the bearing, and a thicker oil film forms. Within a range of 50 rpm to 20 rpm, the degree of separation decreased in Grease C1 and F in step with decreases in speed. At a slower speed than this range, the degree of separation decreased to almost zero in Grease F, whereas Grease C1 showed a tendency to experience more separation as the rotating speed decreased. The assumed steel manufacturing facilities normally operate at around 10 rpm (equivalent to 0.01 m/s rotation speed), so it was determined that under this condition, Grease C1 has a better film formation property than that of Grease F. Furthermore, at 10 rpm, a combination of Grease C1 and water (30%) demonstrated a higher degree of separation compared to Grease F. It was therefore shown that Grease C1 is less likely to lose its film formation property even under a water contaminated condition.

Moreover, a spherical roller bearing (inner diameter 55 mm × outer diameter 100 mm × width 25 mm) was used to evaluate wear resistance. Grease was mixed with 30% water, and water was continuously fed to the bearing during an operation. Figure 4 shows the measurement results for the surface profile of the loading area of the outer ring after the test. The bearing with Grease F showed uneven wear with a maximum wear depth of 20 μm. However, for Grease C1 no such wear was observed and the maximum wear depth was 2 μm.

From these results, the improvement of oil formation by closely examining the thickener composition of grease, as well as the significant enhancement of the wear resistance of the bearing with the grease, has been confirmed.

5. Conclusion

The following conclusion was obtained by ensuring the influence of the grease composition on the grease film thickness and grease replenishment.

- The composition of thickener that can improve grease film formation capacity under low speed conditions was revealed.
- The above composition of thickener improves the wear resistance of spherical roller bearings under low speed, high load, and water contaminated conditions.

6. Acknowledgment

We appreciate KYODO YUSHI CO., LTD. for the cooperation extended to this study.

References

White Structure Flaking in Rolling Bearings for Wind Turbine Gearboxes

Hiroki Yamada and Hideyuki Uyama
NSK Ltd.

Abstract
Bearing failures in wind turbine gearboxes were investigated and rolling contact fatigue tests to reproduce them using a hydrogen-charging method were conducted. Two main failure modes in wind turbine gearbox bearings were white structure flaking and axial cracking, which were involving a microstructural change. Both failure modes can be reproduced by using specimens charged with hydrogen. Operating conditions, which can induce hydrogen generation from lubricant and penetration of the bearing steel were discussed. Effects of bearing material on white structure flaking life were suggested as one of the countermeasures.

1. Introduction
Premature failures of rolling bearings occasionally occur in wind turbine gearboxes. One of the main failure modes is flaking involving a microstructural change. This type of flaking is called white structure flaking (WSF) or white etching crack (WEC) because the area of the microstructural change observed in the flaking cross sections looks white after etching. Therefore, understanding the mechanism of white structure flaking is important for wind turbine gearbox reliability.

Flaking in rolling bearings occurs due to rolling contact fatigue and it is a similar phenomenon as spalling in gears. Flaking is generally classified to subsurface originated flaking which is initiated at nonmetallic inclusions in materials and surface originated flaking, which occurs under contaminated or poor lubrication conditions. However, recently white structure flaking can be seen in several applications, which is a different type of flaking from the subsurface and surface originated flaking mentioned above. For example, it is known that white structure flaking sometimes occurs in bearings for automotive electrical accessories as shown in Fig. 1.

There are many studies about the failure mechanism and the countermeasure for white structure flaking in automotive bearings. Some of them suggested that this type of flaking is induced by hydrogen generated by decomposition of the lubricating oil, grease, or water in the lubricant and that this phenomenon is concerned with hydrogen embrittlement.

Axial cracks are also observed in failed bearings for wind turbine gear boxes. This failure mode is very unique and it is seldom found in other applications. The same microstructural change as seen in white structure flaking is often observed in the cross sections around the axial cracks.

However, it is unclear whether the mechanism of white structure flaking and axial cracking are the same or not. In this study, rolling contact fatigue tests were performed in order to reproduce white structure flaking and axial cracking by using specimens charged with hydrogen. From the view of hydrogen theory, influencing factors in operating conditions were discussed and effects of materials on bearing life were suggested as the countermeasure.

2. Observation results of failed bearings for wind turbine gearboxes
Failed bearings in wind turbine gearboxes have been observed and two types of failures were mainly observed, which are classified as white structure flaking and axial cracking.

Figure 2 shows the observation results of a failed cylindrical roller bearing, which were used on the high speed shaft in wind turbine gearboxes.

Fig. 2 The raceway and the cross section of a failed bearing with white structure
(a) Raceway surface of flaking area
(b) Cross section of the dotted line in Fig 2 (a)
(c) Cross section of no flaking area

A small flaking was seen in the raceway surface as shown in Fig. 2 (a). Figure 2 (b) shows the cross section of the flaking area at the dotted line in Fig. 2 (a). A microstructural change called white structure was observed at the flaking. Flaking morphology of failed bearings in wind turbine gearbox and automotive electrical accessories seem to be very similar as shown in Fig. 1 and Fig. 2 (b) although bearing types and size are quite different. Namely, small size ball bearings are used for automotive electrical accessory and large size roller bearings are used for wind turbine gearboxes.

Figure 2 (c) shows the cross section of an area without flaking in the same bearing as shown in Fig. 2 (a) and (b). White structure was observed even in this area, which is most likely to be the prior stage to flaking. Therefore, it is presumed that this type of flaking in wind turbine gearboxes is initiated at the white structure.
3. Rolling contact fatigue tests to reproduce white structure flaking and axial cracking

Reproduction of the bearing failure mode is important to know the failure mechanism and to find the most appropriate countermeasure. We carried out two kinds of rolling contact fatigue tests in order to reproduce white structure flaking and the axial cracks. Hydrogen is utilized in these tests because microstructural changes called white structure were seen in both of these failure modes.

3.1 Experiment to reproduce white structure flaking

Flat disk type specimens with a diameter of 65 mm and a thickness of 6 mm were used in rolling contact fatigue test. The specimens were made of JIS-SUJ2 bearing steel, equivalent to SAE52100 and DIN-100Cr6. The specimens were quenched and tempered to produce a final hardness of 740 HV and the surface was ground and then lapped. Before rolling contact fatigue testing, the specimens were charged with hydrogen by immersing them in NH4SCN aqueous solution at 323 K for 24 h.

The specimens were immediately assembled into the thrust bearing test machine after having been charged with hydrogen as shown in Fig. 4. The upper race was a 51305 thrust bearing ring and the lower race was the specimen mentioned above. The rolling elements were 6 balls with a diameter of 9.525 mm. The retainer used was made of brass. The lubricating oil used was ISO-VG68. The maximum contact pressure was 3.8 GPa and the rotating speed was 1 000 min⁻¹.

3.2 Test result of rolling contact fatigue to reproduce white structure flaking

Figure 5 shows the result of thrust type rolling contact fatigue tests using the hydrogen-charged specimen and uncharged specimen. Flaking occurred in the hydrogen-charged specimens, and the rolling contact fatigue life was much shorter than in the uncharged specimen.

Figure 6 (a) shows the microstructure of the flaking cross section in the hydrogen-charged specimen. White structure was observed around the flaking area. White structure was observed also in the cross section of an area without flaking as shown in Fig. 6 (b). Therefore, it is presumed that this flaking was initiated from white structure formed subsurface. On the other hand, flaking did not occur and the tests were suspended in the uncharged specimen. There was no microstructural change in the uncharged specimen. Therefore, it is presumed that hydrogen induced microstructural change and decreased rolling contact fatigue life. It seems that these microstructural changes observed in the rolling contact fatigue tests using hydrogen-charged specimens are the same microstructure as seen in failed bearings of wind turbine gearboxes and automotive electrical accessories.

It is reported that hydrogen enhances localized plasticity and this mechanism is known as the HELP theory. Therefore, it is supposed that white structure represents a localized microstructural change by interaction between cyclic plasticity and hydrogen in the rolling contact fatigue process.
3.3 Experiment to reproduce the axial cracks

Cylindrical roller bearings are used for the experiment to reproduce the axial cracks, because they are often used for wind turbine gearboxes and the axial cracks have not been seen in ball bearings. Although, white structure flaking has been observed in ball bearings. Bearing number of N 208 made of JIS B 1532 bearing steel, equivalent to SAEE2100, were used as the test bearings with a bore diameter of 40 mm and an outside diameter of 90 mm. Only the outer ring was separated and charged with hydrogen by the same method mentioned previously and the inner ring and the rollers were uncharged, and then the test bearing was set on the radial type bearing test machine as shown in Fig. 7. The reason why the outer ring was chosen for hydrogen charge is that hydrogen in the outer ring is more difficult to diffuse out of the steel than the inner ring as the temperature of outer rings are normally lower than that of inner rings. The lubricating oil used was ISO VG150. The maximum contact pressure on the outer raceway was 2.1 GPa and the rotating speed was 3 000 min⁻¹.

3.4 Test result of bearing life test to reproduce axial cracks

Bearing life test of the hydrogen-charged bearing was stopped by detecting the vibration at the testing time of 280 h. On the other hand, the test of the uncharged bearing was suspended at the testing time of more than 1 000 h because there was no sign of bearing failure.

Figure 8 shows the outer ring raceway surface which was charged with hydrogen. One large crack and two small cracks were observed. These cracks propagated straight in the axial direction and were identical to the axial cracks in the failed bearings of wind turbine gearboxes.

Figure 9 (a) shows the cross sections of the cracking area including the position 2 in Fig. 8 (a). The large crack propagated in the depth direction. White structure was observed independently in Fig. 9 (a) position 1 to the left of the large crack magnified in Fig. 9 (b). And also, Figure 9 (c) is the magnification of the position 2 in Fig. 9 (a) and including the small axial crack in Fig. 8 (c). The small crack connected with white structure. Therefore it is supposed that white structure was formed first as in Fig. 9 (b) and then a small crack initiated from the white structure and propagated to the raceway surface such as Fig. 9 (c) and finally the crack propagated in the axial and depth directions such as it is visible in Fig. 8 (a) and Fig. 9 (a). Figure 9 (d) shows the cross section including the small axial crack in Fig. 8 (b). White structure was observed also in this area and it seems that the crack initiated at the white structure and propagated to the surface. However, white structure was not observed on the cross section of the large axial cracks. This reason is supposed that the initiation of the large axial crack would be white structure, but it is difficult to observe the cross section pinpointing the crack initiation. It is much easier to observe the cross section of the crack initiation in the small axial cracks.

Failure mode of the axial cracks is very unique and is seldom seen in other applications except for wind turbine gearboxes. However, it seems that the hydrogen-charging method does reproduce it. This method is very simple and the other effects on rolling contact fatigue are small. Therefore, it is supposed that axial cracks seen in wind turbine gearboxes bearings are also caused by hydrogen. The patterns of white structure due to hydrogen are random, so that cracks along the white structure can propagate in various directions. It is supposed that some cracks mainly propagate in a horizontal direction to the rolling elements' translational direction and finally cause flaking, and that other cracks mainly grow in the vertical direction to the rolling elements' translational direction and result in the axial cracks on the raceway surface as shown in Fig. 10.
4. Operating condition inducing white structure flaking

The bearing failures in wind turbine gearboxes are more likely to be caused by hydrogen as shown in the rolling contact fatigue tests to reproduce white structure flaking and axial cracking. Therefore, it is important to know the causes of hydrogen generation and penetration into the bearing steel, although there is no direct evidence that hydrogen is generated and penetrated into the steel in wind turbine gearbox bearings. It is reported that hydrogen is generated by decomposition of lubricant, water in the lubricant, slip, vibration, and electric current. These previous studies are mainly conducted for automotive bearings. However, influencing factors are basically common also to wind turbine gearboxes.

4.1 Type of lubricant

It is reported that lubricant is decomposed by a chemical reaction with a fresh metal surface, which is formed by local metal-to-metal contact and thereby generates hydrogen. Bearing life of white structure flaking is depending on additives included in the lubricant. Some additives decrease bearing life and other additives increase it. The effect of extended life is more likely due to the oxidation film formed by a tribochemical reaction. Oxidation film can prevent a fresh metal surface from being exposed to lubricants and keeping the raceway surface chemically stable as some kinds of additives enhance to form the oxidation film on the fresh metal surface.

4.2 Slip and vibration

Slip between rings and rolling elements and bearing vibration can cause local metal-to-metal contact resulting in the exposure of a fresh metal surface. In the study about automotive ball bearings, it is reported that white structure was not formed at the bottom center of the raceway where maximum contact pressure was subjected, but instead near the raceway shoulders where large differential slip occurred. Slip between rings and rollers is relatively small in cylindrical roller bearings and tapered roller bearings, which are normally used for wind turbine gearboxes. However, large slip may occur during rapid acceleration and deceleration of a rotating shaft.

4.3 Electric current

The problem of white structure was well known first in bearings for automotive electrical accessories. Static electricity was believed as the cause of hydrogen generation because frictional electrification can occur between the pulley and the drive belt made of rubber. It is reported that ceramic ball and an insulated pulley to shut out electric current prevented white structure flaking and that the grease containing nanocarbon powders with conductivity was also very effective because it can keep static electricity neutralizing and prevent the electric discharge at metal-to-metal contact. Electric discharge forms a fresh metal surface where the steel surface is locally melted by a spark.

Electrical corrosion in rolling bearings only occasionally occurs in generators of wind turbines. Stray currents from the generator may affect gearbox bearings.

5. Effects of material on white structure flaking

Hydrogen is most likely to be a concern with bearing failures in wind turbine gearboxes as mentioned previously. Prevention of hydrogen generation and penetration into the bearing steel is very effective as countermeasures for white structure flaking; however, it is currently unclear which operating conditions induce wind turbine gearbox white structure failures. Material improvement with a strong resistance to hydrogen is also a candidate as another countermeasure.

5.1 Effect of chemical composition of steel

Figure 11 shows the result of a rolling contact fatigue test using the flat disk specimens charged with hydrogen and the thrust type rolling contact fatigue test machine in the same way as shown in Fig. 4. Four kinds of steels were used for the specimens: JIS-SU2 equivalent to SA552100, steel A, B and C. Chemical compositions were different in them; steel A contains more Mn, steel B contains more Si and steel C contains more Cr. Rolling contact fatigue life of steel A, B and C was extended comparing to JIS-SU2. This result suggests that white structure flaking life can be extended by improvement of chemical composition of steel and it can delay formation of the white structure.

5.2 Effect of heat treatment

Figure 12 shows the result of a rolling contact fatigue test using hydrogen-charged specimens in the same way. Two kinds of specimens with the same chemical composition of steel (JIS-SU2) and a different heat treatment were used, namely one data set was through hardened specimens and the other was carburizing specimens. The rolling contact fatigue life of the carburizing specimens was longer than the through hardened specimens. It is supposed that compressive residual stress and larger amounts of retained austenite near the surface, which were formed by the carburizing heat treatment were effective against white structure flaking. Compressive residual stress can delay crack propagation initiated at the white structure, resulting in an extended time from crack initiation to flaking. Retained austenite can delay hydrogen from concentrating in high subsurface shear stress areas because the hydrogen diffusion rate in an austenitic structure is much slower than in a martensitic structure.

These results suggest that an optimum combination of chemical composition of the steel and heat treatment condition can produce long life bearings resistant to the formation of white structure flaking.
Development of New-Type Oxide Ceramic Ball for Bearings
Yasuki Ueda, Yasuyuki Shimizu, and Keiji Ueda
NSK Ltd.

Abstract
The rolling contact fatigue life of oxide ceramic such as alumina and silicon nitride is known to be inferior to silicon nitride, which is used as a standard bearing ceramic material. Therefore, we have developed a new type of oxide ceramic material by creating a composite of alumina and silicon nitride with rolling contact fatigue properties and toughness equal to silicon nitride.

1. Introduction
The rolling contact fatigue life and static capacity of silicon nitride are similar to those of bearing steel. Therefore, it is used as the standard ceramic material for bearings. In addition to silicon nitride, oxide ceramics are also used as a bearing material. However, the rolling contact fatigue life of the oxide ceramics is inferior to silicon nitride and therefore too weak to be used in relatively small size of applications. We therefore develop a new type of oxide ceramic material by producing a composite of silicon nitride and alumina, which is able to achieve productivity and functionality as a bearing material. We will report in this paper about the rolling contact fatigue performance and fracture toughness of the new type of oxide ceramic material.

2. Test method
Life testing was conducted on AISI 52100 nose ball bearings with a 25mm bore diameter and a 50mm outside diameter. Each bearing was composed of a combination of ceramic rolling elements and steel ring races. Alumina, silicon nitride, and silicon carbide were used for the ceramic rolling elements. The ring races were made from hardened and tempered SA-E steel. The test conditions were as follows; 4,400 r/min and 2,000 minutes of bearing rotation, 388 in. (98.922 mm) ball size, 3 balls per test, ISO VG15 lubrication oil and plastic cages. After life testing, the ceramic balls were examined for damage using a scanning electron microscope (SEM).

Fracture toughness was measured by the IP method based on ASTM P 696-96 using a Vickers indenter with a load of 196N and a dwell time of 15s. The measurements were made on a polished cross-section of a ceramic ball, 1.0 mm in diameter, prepared from the IP method and preparation of the IP method. To examine crack propagation, a probe was produced in the surface of the sample balls using a Vickers indenter with a load of 196N and a dwell time of 15s. This was done after highlighting the grain boundaries of the sample balls made in alumina,.
4. Conclusions

The rolling contact fatigue properties of a new type of oxide ceramic were investigated in this study. The conclusions were as follows:

1. The life of the composite oxide was improved compared to conventional alumina and zirconia and similar to silicon nitride.
2. The damage condition depends on toughness with grain dropout observed on the surface of alumina balls and concentric flaking observed on the surface of the tougher ceramic materials such as zirconia, composite oxide and silicon nitride.
3. The toughness depends on grain size. If the grain size is small, the number of grain boundaries along which the crack has to propagate is large, which makes it difficult for the crack to propagate due to the increase in energy needed to divide the grain boundaries. As a result, it is estimated that the toughness value becomes high.

4. References

Correlations Between the Porosity and Friction Performance of Wet Friction Materials

Takayuki Hiramoto (Current Enrollment: Core Technology R&D Center)
NSK-Warner K.K. Core Material Development Department
Kenichi Iso
Core Technology R&D Center

Abstract
Wet friction materials are used in the clutches of automatic transmissions because of their high porosity and high elasticity. The porosity is significant, as it directly affects friction performance and durability. With X-ray CT, it is now possible to measure the three-dimensional distribution of the pores of friction materials in a way that has not been done before. Furthermore, the magnitude of porosity and pore diameter as well as three-dimensional distribution have been confirmed as important factors in terms of friction performance.

1. Introduction
In recent years in the automotive world, priority has been increasingly given to improving fuel efficiency and reducing emissions to address global environmental and resource-related concerns. Engineering development has been promoted to achieve weight saving, high efficiency, and improved drivability in automatic transmissions (ATs) that transmit engine drive force. Wet friction materials are used in clutches and brakes in ATs to efficiently transmit engine drive force (Figure 1). The number of requirements for heat resistance and durability in wet friction materials has risen year after year, as heat generation from clutches tends to increase due to its increased engaging frequency and high revolution engagement. There is also growing demand to multiply the number of shift steps toward improving AT efficiency and drivability. Wet friction materials are made of paper containing fiber, filler, and friction modifier and are hardened with a thermo-setting resin such as phenol. They have high elasticity due to high porosity (Figure 2). Automatic transmission fluid (ATF) is absorbed and discharged through the pores when a clutch engages or disengages. The oil film underlying the friction interface is therefore significantly affected by the porosity, and friction performance varies depending on the pores. Furthermore, ATF absorption and discharge through the pores lowers the temperature of the friction interface and prevents heat accumulation, and so the porosity of the friction material affects its longevity.

Measuring the porosity of friction materials was previously carried out using a mercury porosimeter (mercury intrusion technique). This allows for measuring the porosity of an entire friction material and pore diameter alone; however, it cannot be used to measure three-dimensional pore distribution. This article describes the inner structure of friction materials observed using X-ray CT as well as three-dimensional pore distribution and reports on correlations between porosity and friction performance.

2. Method of Measuring Porosity
2.1 Mercury porosimeter
With a mercury porosimeter, pore diameter can be calculated using Washburn’s formula consisting of the applied pressure into pores and the surface tension. Equation 1 represents Washburn’s formula and Figure 3 shows the schematic diagram of measurement.

\[D = \frac{4\cos\theta}{P} \]

Equation 1

\(D \) : Pore diameter, \(P \) : Pressure, \(\theta \) : Contact angle, \(\sigma \) : Surface tension

There are some disadvantages to using a mercury porosimeter. For example, a sample may become deformed when pressure is applied. Also, the diameter of aperture through which the mercury passes is considered to be the pore diameter. This means that measuring the diameter of the inside pore is not possible, even if the area under the aperture is wider or narrower than the diameter.
2.2 X-ray CT

Figure 4 shows the workflow used for the porosity analysis with X-ray CT. The CT images are in grayscale and have been processed according to radiocaccy. The low radiocaccy fibres and fillers are bright and the high radiocaccy materials, including air, are dark. The CT images were binarized through image processing, and the pores and materials were separated as either black or white. The porosity and pore diameter were analyzed in accordance with the binarized images. The porosity was calculated using three-dimensional analysis, while the pore diameter was determined using two-dimensional analysis. Since pores are interconnected in friction materials, individual pore diameter cannot be determined through three-dimensional analysis. Therefore, the pore diameters were analyzed using the cross-sectional CT images of the friction materials and then calculated using the data that was obtained.

With X-ray CT, the above-mentioned problems can be avoided, including sample deformation and limited capability when measuring the aperture diameters alone.

3. Experiment

3.1 Friction material

Two types of friction material, with different porosity due to paper making processes, were used. Sample A had an even porosity and pore diameter, whereas Sample B was intentionally designed to be paper so that the construction would have an uneven structure with different porosity and pore diameter at various depths. Both materials had the same composition, and so the observed difference would be solely in porosity. Table 1 shows the composition and porosity of each material.

3.2 Pore measurements

Using a mercury porosimeter and X-ray CT, porosity was evaluated. In the X-ray CT evaluation, five different layers were analyzed at varying depths of both friction materials in order to determine pore distribution.

3.3 Durability test

To determine the durability of each friction material, a continuous slip test was used to measure the temporal changes in the friction coefficient. Conditions for the evaluation were 400 rpm, a torque of 27 Nm, a flow of 1.6 L/min, an engagement time of 25 seconds, a disengagement time of 30 seconds, and a total heat generation of 18850 kJ/m².

4. Results and Discussion

4.1 Distribution of pores

Figure 5 shows the pore diameter distribution that was measured using the mercury porosimeter. Sample A has a peak in pore diameter, whereas Sample B has two peaks. In addition, the pore diameter is greater in Sample B than in Sample A.

Figure 6 shows the CT images of the first (surface) layer and fifth layer of each friction material. The CT images were binarized through image processing to make the pores more distinctive. The result, the pores are represented in black. Figure 7 shows the distribution of pore diameters in the first and fifth layers, which was calculated based on the CT images. Sample A shows little difference in the pore diameters in the first and fifth layers. Sample B has very large pores in the first layer compared to those in the fifth layer. It is evident that the larger diameter peak measured by the mercury porosimeter represents the pores in the first layer.

Figure 8 shows the porosity in each layer. In Sample A, the difference in porosity among the five layers is approximately 4%, showing an even porosity distribution. On the other hand, in Sample B, the difference is greater among the five layers, showing an uneven porosity distribution. The first layer showing particularly large pores has significant porosity, amounting to 10% more than that of the fifth layer.

The mercury porosimeter only revealed the difference that the porosity in Sample B is greater than that in Sample A. However, X-ray CT revealed that Sample A has an even distribution in both pore diameter and porosity, and that larger pores gather on the upper surface in Sample B with an uneven porosity distribution. Therefore, X-ray CT made the detailed porosity of friction materials observable, which had previously been unobservable by mercury porosimeter.

Table 1 Sample composition and porosity²

<table>
<thead>
<tr>
<th></th>
<th>Sample A</th>
<th>Sample B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aramid fiber [%]</td>
<td>28.5</td>
<td>28.5</td>
</tr>
<tr>
<td>Diatom earth [%]</td>
<td>28.5</td>
<td>28.5</td>
</tr>
<tr>
<td>Phenolic resin [%]</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Porosity [%]</td>
<td>52.2</td>
<td>50.2</td>
</tr>
<tr>
<td>Porosity distribution</td>
<td>uniform</td>
<td>non-uniform</td>
</tr>
</tbody>
</table>

Fig. 4 Porosity analysis flow

Fig. 6 Binary cross-sectional images of samples²

Fig. 7 Distribution of pore diameters in the first and fifth layers

Fig. 8 Porosity distribution
4.2 Durability evaluation results

Figure 9 shows the temporal change in friction coefficient in a slip test. In Sample A, which has an even distribution of pore diameter and porosity, the friction coefficient is stable in the early phase of the test and gradually decreases from the middle to the late phase. In Sample B, however, where the pore diameter and porosity are both uneven, the friction coefficient continues to decrease from the early phase, which leads to a 10% or greater difference from Sample A.

It has been considered that the greater the pore diameter, the longer the life becomes due to less impact of clogging by sludge caused by ATF. However, this experiment has produced the opposite result in that the friction coefficient decreased earlier in Sample B, where the pore diameter and porosity are both uneven, the friction coefficient continues to decrease from the early phase, which leads to a 10% or greater difference from Sample A.

We will continue to develop high-performance friction materials as we further clarify the correlations between pore distribution and friction performance and by improving paper-making techniques to control pore distribution.

5. Afterword

With X-ray CT, measuring the three-dimensional distribution of the pores of the friction material is now possible. Furthermore, the magnitude of porosity and pore diameter as well as the three-dimensional distribution were all confirmed to be important factors in terms of determining the friction properties.

We will continue to develop high-performance friction materials as we further clarify the correlations between pore distribution and friction performance and by improving paper-making techniques to control pore distribution.

References

Development of a High-Power Two-Roller Traction Tester and Traction Curve Measurement

Hirofumi Itagaki, Masahiro Kita, and Hiroki Hashiguchi
Powertrain Technology Development Department

1. Introduction

Thanks to their low-noise, low-vibration, continuously variable transmission, and other advantages, traction drive devices are used as acceleration/deceleration gear or transmission for automobiles, aircraft, and other industrial machines.

Figure 1 outlines the basic structure and power transmission principle of toroidal continuously variable transmission (T-CVT), a form of traction drive device. T-CVT is made up of multiple rolling elements (disks and power rollers) with a smooth surface. As shown in the enlarged illustration in Figure 1, a pair of disks and a power roller are in contact with each other with an axial force F_a applied in the disk axis direction. Thus, elasto-hydrodynamic lubrication film is formed in the contact area, and then a tangential force (traction force) F_r is generated as the shear resistance of the oil film, is transmitted between the disk and power roller. Traction force F_r is proportional to the contact surface normal component F_N (contact force) of which the proportional constant is called the traction coefficient. The coefficient μ is known to vary depending on creep caused between rolling elements, and the curve indicates the relationship between the two is called traction curve.

Figure 2 is a pattern diagram of the traction curve. The traction coefficient typically increases in a linear fashion in a relatively low creep rate range, and its gradient slows as the rate increases and starts to decline as soon as it reaches a maximum value (μ_{max}). In other words, traction drive devices are capable of transmitting drive force only in a low creep range below the maximum traction coefficient μ_{max}, and they experience gross slip (excessive slip) in a range over μ_{max}.

In designing traction drive devices, contact force and device dimension should be determined based on the required specifications of transmission torque. A parameter (μ_c), called design traction coefficient, is generally used to determine the contact force F_c needed for transmitting the torque T. A relational expression $F_c = T/(\mu_c R)$ holds, provided the rolling radius of the rolling element is R. If F_c is too great for a device to withstand, the dimensional data including R should be reconsidered.

To avoid gross slip, a design traction coefficient μ_c must be low enough with a certain margin against an estimated maximum traction coefficient μ_{max} under drive conditions (Figure 2). To ensure safety, however, if a design traction coefficient is set too low, a greater contact force F_c is required, as is clear from the above-mentioned relational expression $F_c = T/(\mu_c R)$. This is detrimental in that not only the dimension and weight of the device increase but the transmission efficiency and longevity decrease. Thus, to ensure the functionality of traction drive devices and improve their performance (more compact, lightweight, and efficient), it is imperative that an optimal design traction coefficient be determined by using the traction curves measured under practical operating conditions.

Abstract

Measuring and estimating the traction coefficient is necessary to improve transmission efficiency and to design compact, lightweight traction drive devices such as toroidal continuously variable transmissions. However, few attempts have been made to measure and estimate the traction coefficient under practical operating conditions, and the design of traction drive devices has used extrapolated values from the traction coefficient measured under low-power conditions. This question remains whether the estimated traction coefficient is applicable or not. Therefore, we developed a high-power two-roller traction tester to clarify the trends in variation of traction curves under various operating conditions similar to practical traction drive devices. This paper details the configuration of the tester and shows several resulting traction curve measurements. This traction tester contributes to building a traction curve database to make traction drive devices more compact, lightweight, and efficient.
Therefore, we have developed high-power two-roller traction testers for the purpose of measuring and estimating the traction curves under unprecedented conditions, where actual operating conditions are presumed. This paper details the configuration of the developed tester and shows resulting traction curve measurement data.

2. High-power Two-roller Traction Tester

2.1 Configuration of tester

Figure 3 outlines the developed high-power two-roller traction tester. The tester consists of a chamber, electric motor, hydraulic cylinder, and oil circulation unit. Inside the chamber, a flat-surface roller and spherical surface roller are in contact with each other, and the axis of each roller connects through the motor axis outside of the chamber via a gear box. The oil circulation unit consists of a tank, heater, pump, and other components that feed traction oil into the chamber (contact area of two rollers, gear, and bearing). The oil deposited at the bottom of the chamber is collected in the tank through an oil-drain port and supplied into the chamber again. During the test, traction oil was heated by the heater so that supply temperature and flow remained constant.

Figure 4 outlines the roller peripheral section. The rollers are made of bearing steel, and the contact surface of respective rollers is mirror finished with an arithmetic average roughness of 0.05 μm or less. The flat-surface roller’s housing is fixed to the chamber bottom. On the other hand, the housing of the spherical-surface roller fixed on the stage supported by the linear guide can slightly move in the radial direction of the roller, making it capable of applying any amount of radial direction load (contact force) by means of the hydraulic cylinder. Moreover, the intersection angle of the spherical-surface roller and flat-surface roller φ can be changed freely; thus, the spin angular velocity ω_h at the contact area of both rollers can be adjusted (Figure 4). The ratio of spin angular velocity ω_h to the spherical-surface roller’s ω_s (spin ratio $\gamma = \omega_h/\omega_s$) is expressed as $\gamma = \sin \varphi$. If the intersection angle of the roller axes is 0°, the spin ratio is 0. In this paper, these test conditions are referred to as pure rolling conditions.

During the test, the two rollers were driven at various numbers of revolutions with contact force applied, and the resulting torque at the roller axes was measured. Contact force is measured by a load cell installed between the back of the spherical-surface roller’s housing and the hydraulic cylinder. The number of revolutions are measured by an electromagnetic rotation sensor, and torque is measured by an inductive flange type torque sensor directly connected to the axis. In addition, the rollers’ operational surface temperature can also be measured during a test. As shown in Figure 4, the contact-type temperature sensor is fixed to a position, and 90° shifted from the flat-surface roller’s ellipsoidal contact end.
Table 1 and Figure 5 show the range (i.e., upper limit) of the operational conditions (contact surface pressure, peripheral speed, and spin ratio) that this tester can apply. A maximum contact surface pressure P_{max} at the rollers’ contact area can be calculated with the rollers’ dimension and contact force based on the Hertz contact theory. A maximum contact force measurable by the used load cell was 20,000 N, which, along with the dimensions of the rollers shown in Figure 4, leads to obtaining a maximum contact force based on the Hertz contact theory. A contact area can be calculated with the rollers’ dimension and peripheral speed, and spin ratio) that this tester can apply. Figure 5 also gives values measured by conventional testers in previous studies, in addition to the values obtained by the tester. As shown in the figure, the tester has made it possible to measure traction curves under practical operating conditions where transmission power exceeds 100 kW, which had been impossible for conventional testers.

2.2 Test method

This section describes the method of measuring the traction curves using the tester. In the test, while a certain contact force was being applied, the motor speed was controlled by the instructions, as indicated in Figure 6, in order to generate any degree of creep between the two rollers. Next, the steady response parts of the chronological data of the measured revolution of rollers, axis torque, surface temperature, and contact force were averaged and determined as the measurement value at each creep rate. A traction curve was then obtained by calculating the creep rate C_r based on the measured revolution, and the traction coefficient μ, based on the measured torque and contact force. Creep rate is defined in this paper as the ratio of the difference in the peripheral velocity of two rollers to the peripheral speed of the flat-surface roller (see expression in Figure 6).

Table 1: Measurable range of the developed tester (upper limit)

<table>
<thead>
<tr>
<th>Operating conditions</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum contact surface pressure P_{max}</td>
<td>3.52 GPa</td>
</tr>
<tr>
<td>Peripheral velocity U</td>
<td>70 m/s</td>
</tr>
<tr>
<td>Contact force F_c</td>
<td>20,000 N</td>
</tr>
<tr>
<td>Spin ratio λ</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Table 2: Rheological properties of traction oil

<table>
<thead>
<tr>
<th>Rheological properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (15°C)</td>
<td>0.934 g/cm³</td>
</tr>
<tr>
<td>Kinetic viscosity</td>
<td></td>
</tr>
<tr>
<td>40°C</td>
<td>19.74 mm²/s</td>
</tr>
<tr>
<td>100°C</td>
<td>4.45 mm²/s</td>
</tr>
<tr>
<td>Pressure viscosity coefficient</td>
<td></td>
</tr>
<tr>
<td>40°C</td>
<td>21.2 GPa⁻¹</td>
</tr>
<tr>
<td>100°C</td>
<td>14.4 GPa⁻¹</td>
</tr>
</tbody>
</table>

Fig. 4 Schematic view of the roller peripheral section of the high-power two-roller traction tester

Fig. 5 Comparison of measurable contact forces and peripheral velocities

Fig. 6 Traction curve determination method

Table 2 Rheological properties of traction oil
3. Traction Curve under Pure Rolling Conditions

This section provides the measurement results of the traction curve under pure rolling conditions.

3.1 Comparison of traction curves

Figure 7 shows the traction curves measured at a supply oil temperature $T_{oil} = 80^\circ C$. In the figure, measurements at a maximum contact surface pressure of 1.5 GPa are provided on the left (a) and at 3.5 GPa on the right (b). Comparing both (a) and (b) at the same peripheral speed, the greater a maximum contact surface pressure, the higher the traction coefficient becomes. A comparison under the same contact surface indicates that the faster the peripheral speed, the lower the traction coefficient. Moreover, after the traction coefficient reaches the greatest values, the reduction rate of the traction coefficient to the creep rate increases with the increase of peripheral speed. This is because the faster the peripheral speed, the greater the shear heat generation, which increases the temperature of oil film and decreases oil viscosity. On the other hand, few differences was observed in regard to the peripheral speeds when analyzing the start-up portion of the curves.

Figure 8 shows the traction curves measured at a peripheral speed of 70 m/s. In this figure, the measurements at a maximum contact surface pressure of 1.5 GPa are provided on the left (a) and at 3.5 GPa on the right (b). Figure shows that the lower a maximum contact surface pressure and the higher a supply oil temperature, the less the traction coefficient. Furthermore, it shows that the difference is more significant when the maximum contact surface pressure is low.

3.2 Comparison of maximum traction coefficients

The maximum traction coefficient μ_{max} and roller surface temperature at μ_{max} were obtained by measuring the traction curves, the results of which are shown in Figure 9. These were obtained under 42 different conditions combining two maximum contact surface pressures (1.5 and 3.5 GPa), 7 peripheral speeds (10, 20, 30, 40, 50, 60, and 70 m/s), and 3 supply oil temperatures (80, 100, and 120°C). The horizontal axis represents a maximum transmission power $Q = \mu_{max}P_cU$ under individual measurement conditions. As shown in Figure 9, the greater the transmission power, the higher the roller surface temperature; thus, the maximum traction coefficient decreases. The change rates of the roller surface temperature and that of the maximum traction coefficient are almost the same even under different supply oil temperatures, and they increase at lower maximum contact surface pressures.

The relationship between the roller surface temperature and maximum traction coefficient is represented linearly. Also, its gradient decreases with the increasing maximum contact surface pressure and becomes almost steady above certain maximum contact surface pressures.

![Fig. 7 Traction curves measured under pure rolling conditions ($T_{oil} = 80^\circ C$)](image)

![Fig. 8 Traction curves measured under pure rolling conditions ($U = 70 \text{ m/s}$)](image)

![Fig. 9 Maximum traction coefficients and roller surface temperatures](image)

![Fig. 10 Relationship between maximum traction coefficients and roller surface temperatures](image)
4. Traction Curve under Spin Conditions

The high-temperature/high-power operational conditions of traction drive devices involve spin in most cases. That is why traction curves under spin conditions were measured in order to compare them with the measurements obtained under pure rolling conditions.

Figure 11 shows the measurements at a spin ratio of 0.29. In this figure, the measurements at a maximum contact surface pressure of 1.5 GPa are provided on the left (a) and at 3.0 GPa on the right (b). The figure also shows the results obtained at different peripheral speeds and supply oil temperatures as well as the data measured under pure rolling conditions.

As shown in Figure 11, at every peripheral speed, both the start-up portion of the gradients and the maximum traction coefficients are smaller in spin conditions than in pure rolling conditions. Also indicated is that the difference is more striking when a maximum contact surface pressure is high. In the high creep area after the start-up portion of the gradients and the maximum traction coefficients reach the greatest values, the surface pressure is high. In the high creep area after the gradients reach the greatest values, the gradients are almost the same both in the pure rolling conditions and in the spin conditions. This is probably because the higher the creep rate, the greater the pure rolling component is against the spin component on the whole, which consequently produces less difference in the traction coefficients between the pure rolling conditions and the spin conditions.

5. Conclusion

In order to facilitate the R&D of more compact, lightweight, and efficient traction drive devices, we developed a two-roller traction tester to enable measurement of traction curves in ways that were never before possible under conditions similar to those faced by the practical traction drive. This paper details the configuration of the tester and shows several resulting traction curve measurements under varied operating conditions.

Data obtained by this high-power two-traction tester will make measuring and estimating traction curves under practical operating conditions possible, thereby contributing to ensuring the functionality of traction drive devices and promoting their optimal design.

References

Hirofumi Itagaki
Masa Hiro Kita
Hashiguchi Hiroki

Fig. 11 Influence of spin motion on traction curves
New Technologies for Bearings in Electric Vehicle and Hybrid Electric Vehicle Powertrains
Takanori Ooshima and Satoshi Masuda
Automotive Powertrain Bearing Technology Center

Abstract
Recent emission controls of vehicle pollutants, such as CO₂ and NOₓ, have led to increased use of hybrid electric vehicles (HEVs) and electric vehicles (EVs) all over the world. The use of these vehicles is likely to spread further since they offer other advantages such as low fuel consumption and good acceleration performance. Bearings used in HEVs and EVs require good performance at high rotating speeds, high static strength, long life, low frictional torque, creep resistance, low noise, and low vibration. In this article, we will introduce some of NSK’s latest bearing technologies created in response to these requirements.

1. Introduction
A solution for recent emission controls of vehicle pollutants such as CO₂ and NOₓ, hybrid electric vehicles (HEVs) and electric vehicles (EVs) have been in the spotlight and introduced worldwide as new drive systems that differ from automatic transmissions (ATs) and manual transmissions (MTs)¹.

HEVs and EVs have the advantage of improving fuel efficiency and acceleration performance, with equal or even less CO₂ and NOₓ emissions compared to gasoline and diesel vehicles. For these reasons, development of HEVs and EVs with various structures is expected, and more compact and lightweight vehicles (HEVs) and electric vehicles (EVs) will likely become widely used around the world in the years ahead. This paper takes a look at performance and new technology requirements for bearings used as key components for HEV and EV powertrains.

2. Performance Requirements of Bearings for HEV and EV Powertrains
HEVs and EVs are currently in the spotlight owing to their excellent environmental performance. However, to utilize their advantages, such as power performance, bearings must have a range of capabilities, as shown in Figure 1.

To illustrate how bearings for HEV and EV powertrain are used, Figure 2 shows a cross section of an HEV unit for an FF HEV². Various types of bearings are used for such applications as motor support and power transmission gear support, and Table 1 shows a list of the related bearings in use.

More compact and lightweight
In view of improving fuel efficiency and packaging size, efforts have been made to make individual components more compact and lighter, which applies to bearings as well. However, the more compact and lightweight a bearing becomes, the lower its load capacity. Therefore, the life and static strength of the bearing is also reduced. Technologies that improve the life and static strength are thus vital in downsizing bearings in order to ensure their durability and reliability.

Greater efficiency
Automakers are committed to improving the efficiency of powertrains by using various technologies, and automobile fuel mileage has also been improving year after year. To reduce the mechanical loss of the HEV or EV unit, demand is growing for a reduction in bearing torque (loss reduction), and companies are promoting efforts to improve each type of bearing, which includes a reduction of rolling or sliding friction and agitating loss.

Electrification
In view of improvements in efficiency and maximum motor-driven vehicle speed, efforts are being made to downsize motors and increase high-speed rotation. With the trend toward high-speed rotation of motors, there are cases in which bearings are used under conditions that exceed the conventionally permissible rotating speed. Various types of bearings must therefore be suitable for these high speeds.

Noise reduction
In motor-driven automobiles such as HEV and EV interiors, which are very quiet, there are cases in which the comfort of passengers can be affected due to operating noise from powertrains, previously almost unnoticeable. Reductions of noise and vibration are thus required in order for the bearings to be usable not only on their own but also with peripheral components.

Fig. 1 Performance requirements of bearings for HEV and EV powertrains

Fig. 2 Cross section of an FF HEV²
3. Bearing Technology Trends in the Area of HEV and EV Powertrains

3.1 Measures for high-speed rotation

3.1.1 Ultra-high-speed planetary cage and roller

Cage and roller-type needle bearings are widely used in planetary gears, a power distribution mechanism that causes an input torque to branch into a direct path to the wheel axle and a path leading to the motor. Where the number of rotations and revolutions in a planetary gear increases as a result of the trend toward higher speeds, high-temperature friction heat is generated in the needle bearing cage and the moving part of planetary gear (Figure 3). This may cause damage to the moving surface from friction, such as galling and heat cracks.

In response to demand for faster speeds, NSK developed a high-speed adaptable planetary cage and roller with improved cage wear resistance (Figure 4). The durability of the cage was improved by applying a chemical film onto the surface, which reduced the friction heat on the sliding surface from friction, such as galling and heat cracks.

In recent years, along with ever-growing demand for faster speeds, other requirements are surging for lowering the viscosity and amount of oil in order to reduce the agitation resistance of the lubrication oil in the HEV and EV units. To address this, by applying another special film onto the upper layer of the aforementioned chemical film, NSK has developed and added to its portfolio an ultra-high-speed planetary cage and roller, which has about 1.5 times higher wear resistance compared to that of NSK’s high-speed specification product. Table 2 shows NSK’s product lineup for each cage specification, for the purpose of introducing optimal high-speed adaptable planetary cages and rollers, depending on the severity of the operating environment.

![Fig. 4 Development history of the planetary cage and roller](image)

Table 1 Location of bearings in an FF HEV

<table>
<thead>
<tr>
<th>Point of Use</th>
<th>Bearing Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Planetary gear</td>
<td>Planetary pinion needle bearing</td>
</tr>
<tr>
<td></td>
<td>Planetary pinion shaft</td>
</tr>
<tr>
<td>2 Between planetary gears</td>
<td>Thrust needle bearing</td>
</tr>
<tr>
<td>3 Main shaft</td>
<td>Shell needle bearing</td>
</tr>
<tr>
<td>4 Motor</td>
<td>Deep groove ball bearing</td>
</tr>
<tr>
<td>5 Counter-drive gear</td>
<td>Deep groove ball bearing</td>
</tr>
<tr>
<td>6 2nd shaft</td>
<td>Deep groove ball bearing</td>
</tr>
<tr>
<td>7 3rd shaft</td>
<td>Tapered roller bearing</td>
</tr>
<tr>
<td>8 4th shaft</td>
<td>Tapered roller bearing</td>
</tr>
</tbody>
</table>

![Fig. 3 Operating environment of the planetary cage and roller](image)

Table 2 M-type cage and roller product lineup

<table>
<thead>
<tr>
<th></th>
<th>Conventional Technology</th>
<th>New Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cage surface texture</td>
<td></td>
<td>Ultra-high-speed spec</td>
</tr>
<tr>
<td></td>
<td>Conventional product</td>
<td>High-speed spec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nitrocarburized layer</td>
<td>Surface layer</td>
</tr>
<tr>
<td></td>
<td>Surface layer</td>
<td>Chemical film</td>
</tr>
<tr>
<td></td>
<td>Core part</td>
<td>Surface layer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Core part</td>
</tr>
<tr>
<td></td>
<td>1.5 times</td>
<td>Twice</td>
</tr>
</tbody>
</table>

![Table 2 M-type cage and roller product lineup](image)
3.1.2 Ultra-high-speed ball bearing

The internal conditions of a bearing under high-speed rotation are shown in Figure 5, and there are cases in which inadequate lubrication or friction between the race surface and balls will result in abnormal heat generation, wear, and cage destruction as centrifugal force increases. By controlling the oil flow inside the bearing and optimizing the internal dimensions, NSK developed an ultra-high-speed ball bearing that can be used even in a range that significantly exceeds the permissible rotating speed of conventional bearings.

To solve the inadequate lubrication problem in the inner ring side due to centrifugal force caused during ultra-high-speed rotation, a plate was installed onto the side surface on the lubricant inflow side in order to optimize an oil flow inside the bearing, as shown in Figure 6. In addition, by optimizing the internal design such as the groove curvature of the raceway, ball diameter, and pitch diameter, the slip amount was reduced between the balls and raceway. This lowers the PV value (P: surface pressure, V: slip velocity) by approximately 30%. The cage, made of light plastic, is self-lubricating. Since there are cases in which a cage may become deformed and even destroyed due to excessive stress caused during high-speed rotation, the design of the cage was made in accordance with operating conditions in order to prevent fracture beforehand.

Figure 7 shows the results of a high-speed durability test of the new product. Heat seizure occurred in the inner ring raceway immediately after a conventional product was tested at a rotation of 30,000 rpm, whereas no damage, such as heat seizure, was observed in the new product, thus enabling the development of a product that is suitable for high-speed rotation.

3.2 Improvement of static strength

3.2.1 Tapered roller bearing with a special crowning

By using a special crowning on the raceway, NSK has developed a tapered roller bearing that is more compact and lightweight than conventional products, while also ensuring that the life and rigidity are equivalent to or better than those of conventional products. When a load is applied to the contact face of the raceway and roller, as shown in Figure 8, a phenomenon called edge load occurs, increasing the contact surface pressure locally. This can result in premature failure due to stress concentration. For this reason, a slight convex shape, called “crowning,” had been placed on the rolling contact surface to reduce the contact surface pressure. When used under high load conditions, however, edge load still occurred; thus, a larger bearing size was used to lower the contact surface pressure and suppress edge load.

In the new product, the raceway surface was processed into a barrel-shaped surface, called special crowning, and the internal design was also optimized in accordance with operating conditions. By doing this, the new product was designed to be suitable for high load conditions, as it is capable of suppressing edge load without having to be larger.

Figure 9 shows an application example of the new product. By applying the special crowning with additional crowning amount added at both ends, edge load is suppressed. Moreover, the optimization of the internal design achieved a weight reduction of approximately 20% compared to conventional products.

Fig. 5 Internal conditions of a bearing under high-speed rotation

Fig. 6 Comparison of lubricating conditions for the new and conventional bearings

Fig. 7 Frictional-heat-generation test results

Fig. 8 Edge load on the contact face

Fig. 9 Contact pressure between the roller and raceway
3.3 Life extension

3.3.1 Extra Quality Tough Ball Bearings for Transmissions (EQTF)

For high-speed rotation of HEV and EV powertrains, when the lubrication environment degrades, flaking may occur at the surface due to a deterioration of the surface texture, which is caused by insufficient oil film between the race surface and balls.

Following a comprehensive study of the mechanism that results in surface-originated flaking, NSK developed EQTF, which extends bearing life by strengthening the rolling elements.

As shown in Figure 10, tangential force caused by the rolling element is acting at indentation fringes of the race surface, producing cyclic stress in association with the load movement. In regard to Figure 10, tangential force-induced tensile stress that is greater than compressive stress causes a crack at the right fringe and flaking.

Figure 11 shows the results of a test conducted to confirm the influence of tangential force on bearing life when the surface texture is changed against the raceway under the same indentation conditions. It was found that the coarser the ball’s surface roughness, the greater the tangential force acting on the indentation fringes of the raceway, and life is thus shortened.

The rolling elements, made from material with higher Si content than typically used quenched and tempered SUJ2, undergo a special carbonitriding treatment. As shown in Figure 12, the rolling element surface is strengthened by depositing super-hard Si nitride, which improves anti-indentation and thus prevents deterioration of the surface texture.

Figure 13 shows the life test results of the new product. They indicate a more than double life extension effect when compared to conventional SUJ2 products. Moreover, the new product can be used in combination with NSK’s other life extension (TF) technology, which can further increase the life extension effect depending on the combination used.

Fig. 10 Tangential force acting on the race surface

Fig. 11 Impact of rolling element surface roughness on flaking life

Fig. 12 Development features

Fig. 13 Life test results
3.3.2 Ultra-long-life planetary shaft (Figure 14)

Planetary shafts used in planetary gears are fixed to a carrier plate using a pin setting method (Figure 15), or the staking type method (Figure 16). NSK has a broad range of products in its lineup meeting the needs for long service life and resistance under severe conditions, as well as more compact and lightweight units, for each shaft fixation type.

(1) Long-life SUJ2 steel planetary shaft
NSK supplies JIS SUJ2 steel-based products of special heat treatment specifications that have undergone a unique nitrocarburizing process or have a special induction hardening specification that suppresses the thermoplastic bend in a high-temperature environment. Adding adequate residual austenite, carbonitride, compressive residual stress, etc., onto the rolling surface, the former has an improved endurance fatigue strength and is mainly applied to the pinning type. Retaining the equivalent rolling surface layer property to that of special heat treatment specification products, the latter has improved endurance fatigue strength by suppressing the thermoplastic bend in a high-temperature environment and is mainly applied to the staking type.

(2) Ultra-long-life NSK original steel planetary shaft
To meet specifications for use under harsher environments, NSK has developed an ultra-long-life planetary shaft for the pinning fixation type, which has greater endurance fatigue strength than special induction hardening specification products as a result of applying a unique heat treatment process to NSK’s original SHX3 steel (high-chrome case-hardening steel). Using NSK’s developed steel suited for deteriorated lubrication environments, the new shaft has improved durability owing to a combination of NSK’s own heat treatment processes, and it delivers about 2.5 times the endurance fatigue strength (Figure 17). As SHX3 steel is characteristically predisposed to harden even at around the shaft end, its application has been limited to the pinning type. NSK’s new SHX3M steel further optimizes the chemical component of the original steel, and has added it to its portfolio of ultra-long-life planetary shafts for the staking fixation type (Table 3).

3.4 Lower torque

3.4.1 Tapered roller bearing with plastic cage
As a result of striving to lower the torque of tapered roller bearings, NSK has gradually achieved a lowering of torque, such as in the reduction of sliding or rolling friction (Figure 18), as well as downsizing by using life extension technologies.
To lower the torque even more, NSK developed bearings with improved seizure performance by reducing the agitation resistance of lubrication oil, which is a key driver of torque next to sliding and rolling friction, and by improving the lubrication property.

To reduce the agitation resistance, inflowing lubrication oil must be controlled. As shown in Figure 19, the clearance is narrow between the cage and inner ring front face rib from where the lubrication oil flows in, and the space between the rollers is filled by the cage. Thus, the optimized cage geometry facilitates torque reduction by about 20% (Figure 20). Additionally, the cage includes an injection-molding processable resin, allowing greater design flexibility.

Tapered roller bearings may face seizure when sliding friction increases at the contact surface between the inner ring large rib and the end face of the roller. Therefore, as shown in Figure 19, an oil pool is outfitted on the cage so that lubrication oil is supplied onto the contact surface of the roller's end face, which is subject to seizure (Figure 21). In unit testing, the new product demonstrated a seizure resistance of about 30% greater than that of a conventional product equipped with an iron cage.

3.4.2 Thin thrust needle roller bearing for planetary gear side (Figures 22 and 23)

As part of NSK’s effort to lower the torque of planetary needle roller bearings, it has introduced friction loss-reduced cages and rollers, including all-roller type cage-and-roller products and compact cage-and-roller products that incorporate life extension technologies.

In regards to the mechanical loss in the planetary systems, NSK focused on reducing mechanical loss from moment loading in addition to the aforementioned reduction effort of cage-and-roller products that support the radial meshing load of planetary helical gears. When a planetary gear inclines due to moment load, the roller also rotates with an inclination, which causes friction loss due to the skew force-induced slide between the washer and planetary gear, placed at either end of the gear (Figure 24).
To reduce this sliding friction, NSK developed thin thrust needle roller bearings that can easily replace other washers of the same product dimensions. The combination of the new, world’s smallest level needle roller of 1 mm (diameter) x 1.8 mm (length) and a very thin race (Figure 25) of 0.2 mm (thiness) can be used to replace the washer. Moreover, the durability of the new product is guaranteed under high-speed rotation conditions of the planetary gear by including a plastic cage with a lubrication hole. It is expected that use of this bearing will reduce washer friction loss by around 70% (Figure 26).

3.5 Noise reduction (next-generation creep-free bearings)
There are cases in which the bearings for HEV and EV powertrains may receive an input of static load from the gear (i.e., load directed to a certain part) or of uneven eccentric load due to motor rotation (i.e., rotating load: the load with which the direction continuously varies). As for bearings with a loose fit, when such diversified loads are applied as the result of lightweight or high-speed motor rotation, a slip phenomenon of the bearings, known as creep, is very likely to occur. Once this happens, creep may lead to bearing wear, and their outer housings will eventually lead to noise and vibration.
When a static load is input, there is strain on the outer ring in a circumferential or radial direction, as shown in Figure 27 (a). When the inner ring and rolling element rotate, the strain distribution changes every time the rolling element passes the outer ring, as shown in Figure 27 (b). A part of the outer ring that extends ahead of the rolling element in a circumferential direction is pressed to move in the direction of the rolling element’s movement.

A part of the outer ring that contracts backward, in the rolling element, is pulled in order to move in the direction of the rolling element’s movement. This repetition makes the outer ring move in the same direction as that of the rotation of the inner ring, thereby generating creep.
When a radial load (F) is applied, as shown in Figure 28, the outer ring comes into contact with the housing that leans in the load direction. For rotating load, the contact face of the outer ring and housing also moves in the same direction, following the rotation of load F. Given that the difference between the housing inner diameter and the outer ring’s outer diameter is ε, the circumferential length difference between the two is 2ε. When the inner ring rotates one revolution, the outer ring falls behind by a length of 2ε on the circumference of the housing and moves in the opposite direction of inner ring rotation, generating creep.
To prevent creep, it is effective to fix the bearing on the case and to adjust for a slight gap in the circumferential direction. Applying an O-ring to conventional products also presents a challenge in ensuring its oil resistance in a high-temperature oil environment.
NSK has developed next-generation Creep-Free Bearings, where creep from both static load and rotating load is suppressed by optimizing the internal design of the bearings as well as the O-ring dimensions.
To prevent creep caused by static load, the outer ring strain has been suppressed by optimizing the rigidity of the outer ring raceway through analysis. Additionally, for creep caused by rotating load, the creep-prevention effect was enhanced with the elasticity and constant compression of the O-ring, even in a high-temperature oil lubrication environment, made possible by the optimization of the high-temperature oil resistant material of the O-ring outfitted onto the outer ring as well as that of O-ring interference (Figure 29).
4. Afterword

This paper introduced the latest technology for bearings for HEV and EV powertrains, with its efforts having been made to achieve more compact, efficient, and higher performance. We will continue to develop new products with a thorough understanding of customer needs and work to meet those needs in order to improve HEV and EV environmental performance, fuel efficiency, and power performance.

References

1. IEA, ETP, Energy Technology Perspectives, 2012.

3. Evolution of the EPS Control Technology

EPS has advantages over hydraulic power steering systems in fuel saving and other features. On the other hand, it has disadvantages in steering maneuverability due to increased friction and inertia, mainly caused by the connection of the power-assist motor and reduction gear. For this reason, the first EPS was regarded poorly for its maneuverability.

As the number of vehicle types in which the system can be used increased, more requirements arose in relation to steering maneuverability. In such a situation, NSK developed EPS by positioning it as a man-machine interface. This is based on the concept that EPS should not only reduce the steering effort of the driver, but it should also function as an interface to accurately convey vehicle movement to the driver.

In Japan, there is an old saying that goes: “unity must exist between the rider and the horse.” In this regard, there must be a sense of unity between the rider’s intentions and the horse’s movements, which in turn makes riding more enjoyable. We believe the same thing is applicable to vehicle driving, and this sense of unity can also be applied to lessen driver fatigue and stress, also providing a sense of self-confidence and security, thus leading to safer driving conditions and fewer traffic accidents.

With this in mind, NSK developed a road information sensitivity design method, which it began to mass produce for European compact cars in 2002. The method was received favorably, as the steering provides a sense of unity. For a specific design method, please see the reference3).

Ever since, as per Table 1, NSK has expanded EPS applicable vehicle types through efforts in pursuit of higher power, and NSK has also been providing a secure and safe EPS, with comfortable steering maneuverability, that is based on the man-machine interface concept. It includes active vibration suppression control (Figure 1) to reduce uncomfortable vibration that spreads to the steering wheel due to brake judder or imbalance shimmy. Moreover, pulling compensation control (Figure 2) makes driving more comfortable by reducing operation force in order to maintain straight traveling.

Next we take a look at ACTIVE ON CENTERING control that is based on the aforementioned concept.

Table 1 History of NSK EPS development

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minicar</td>
<td>10 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compact</td>
<td>5 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPS functional development

- **Rack and pinion** type
- **Column/Pinion** type
- **Brushless motor** Column/Pinion type

Contribution

- Support for compact cars
- Fuel saving

Technology

- Contribution to fuel saving
- Support for compact cars
- Road information sensitivity design

Functional Safety

- Backup assist
- Support for EV
- Functional safety

Improving steering maneuverability

- Improving steering maneuverability
- Support for EV
- Suppression of driving straightening

Fig. 1 Active vibration suppression control

Opposite phase torque is generated by the motor according to the vibration estimated by the EPS’s sensors.

Reduced vibration on the steering wheel by 70% compared to a conventional system.

Fig. 2 Pulling compensation control

To reduce vibration that spreads to the steering wheel, the control for electric power steering instructs the assist motor to output the torque of the opposite phase to vibration from the tires.

A driver can keep driving in a straight line without extra steering input.
4. ACTIVE ON CENTERING Control

4.1 Background and aim of development

As previously discussed, a vehicle controlled based on the driver's intention makes driving more comfortable and enjoyable, leading to a sense of self-confidence and security and safety by lessening stress and fatigue.

However, when returning a steering wheel to a center position to go back to a straight traveling state after having steered right or left at an intersection or gone around a curve, there are cases where drivers will find it more difficult to control their vehicles as intended, as well as the driver's intention of vehicle movement compared to turning the wheel from a straight traveling state. This is because the direction of the vehicle and the orientation of the steering wheel are opposite. In addition, even when moving straight ahead, the driver is required to operate the steering wheel to the correct position every time they encounter bumps in the road, come against a crosswind, or need to even slightly adjust vehicle direction.

In such cases, if EPS creates a state where a steering wheel returns properly without requiring a driver's extra concentration to return the steering wheel to the proper position, the driver can continue to engage in safe, comfortable driving free from challenging steering control and the fatigue and stress that result from such repeated efforts to correct the steering. Moreover, the stability achieved by accurate steering wheel returnability and the elimination of unnecessary course correction allows for a more comfortable space for passengers as well.

Focused on that, NSK developed a new control to change EPS assistance so that the steering wheel returns appropriately.

4.2 Features and configuration of the new control

Most steering wheel returnability is determined by the magnitude relationship between the reaction force from the tires and the resistance force, such as the mechanical friction in the path from the tires to the steering wheel. In other words, when frictional resistance is greater than the reaction force from the tires, the steering wheel stops on its way back to the center position. This means that the driver has to return the wheel if they want to drive straight ahead.

NSK has so far been working on reducing friction and improving efficiency for the steering mechanism, and has thus developed a control to compensate the lack in steering wheel returnability. Figure 3 is a control block diagram of conventional active return control. This conventional control has a basic steering return assist configured at each steering angle, allowing weighting setting according to vehicle speed and steering wheel angular velocity, considering the vehicle properties.

On an actual vehicle, in addition to the steering mechanism, the steering wheel angular velocity is influenced by the suspension and other parts, and the reaction force from tires is subject to change depending on vehicle speed, steering angle, road conditions, tire conditions and other factors. Therefore, optimizing steering wheel returnability according to the properties of the vehicle depends on tuning of control parameters during vehicle testing. Another challenge was that the steering return velocity fluctuates up and down, especially when the reaction force from the tires changes up and down.

To address these challenges, NSK developed a new control with the aim of returning the wheel to the center position by taking a stable transition, regardless of the reaction force from the tires or the mechanism friction magnitudes.

Figure 4 is a control block diagram of the ACTIVE ON CENTERING control. In order to not only return the steering wheel to the center position but also to do this with stable transition; that is, smooth steering wheel angular velocity, the control structure is equipped with the active return control developed by NSK. Moreover, it is also equipped with feedback control, having a target steering velocity calculated according to the conditions of the vehicle and the driver’s maneuver. By using the feedback control, control output can be adjusted to follow a target steering wheel angular velocity, thus making stable steering wheel return possible even though the reaction force from the tires changes due to varying road conditions.

On a target steering wheel angular velocity in the ACTIVE ON CENTERING control can be calculated as follows. So that the control is not dependent on the magnitude of friction, the motion equation of EPS, in which friction is eliminated, is defined in expression (1) below.

\[\dot{\theta} + D\dot{\theta} = SAT + T_e + T_s \]

Symbols used here are defined as follows: \(\theta \) : Steering wheel angular acceleration, \(D \) : Inertia moment in the EPS system, \(D \) : Velocity coefficient in the EPS system, SAT : Reaction force from tire (self-aligning torque), \(T_e \) : EPS assistant torque, \(T_s \) : Driver’s torque. Performing a Laplace transform to expression (1) and adjusting the steering wheel angular velocity \(\dot{\theta} \) using the Laplacian operator \(\mathcal{L} \) gives expression (2).

\[\mathcal{L}\{\dot{\theta}\} = \frac{1}{s^2 + 1} \left(\frac{SAT}{D} + \frac{T_e + T_s}{D} \right) \]

Expression (2) reveals that \(\frac{s}{s^2 + 1} \) has a low pass filter property with \(\frac{1}{s^2 + 1} \) as the time constant. Also, on the left side is a steering wheel angular velocity, but the right side presents angular velocity as well. That is, \(\frac{s}{s^2 + 1} \) on the right side can be interpreted as a steering wheel angular velocity due to the reaction force from tires, and \(\frac{SAT}{D} \) can also be interpreted as a steering wheel angular velocity due to the driver's torque and EPS assistant torque.

To verify the effects of the new ACTIVE ON CENTERING control, NSK evaluated vehicles with the following three viewpoints.

Evaluation 1: Transition of the steering angle and angular velocity after the steering wheel is released

The driver steers to a certain angle while the vehicle is running. After that the steering wheel is released. Steering wheel returnability is evaluated regarding residual steering angle (remaining angle to the center) and transition of the steering wheel angular velocity.

Evaluation 2: Relationship between the driver’s torque and steering angle

Evaluation of steering characteristics by plotting steering wheel angle on a horizontal axis and the driver’s torque on a vertical axis.
5. Afterword

This paper looks at the history of NSY ERS and introduces NSY ERS control technology with a particular focus on the ACTIVE ON CENTERING control. The ACTIVE ON CENTERING control contributes to improving vehicle controllability and comfort, as discussed while presenting the results of vehicle testing. By continuously improving EPS as a man-machine interface, NSY is committed to developing technology while contributing to the realization of vehicle safety, comfort, and environmental protection.

References

Satoshi Shimaguchi

Teiichi Kiyokawa
Development of High-Speed, High-Power Spindles With Automatic Grease Replenishment
Shoichiro Oguri, Yoshifumi Inagaki and Osamu Inamaki
Industrial Machinery Bearing Technology Center

Table 1: Spindle specifications

<table>
<thead>
<tr>
<th>Installed Position</th>
<th>Horizontal/Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. rotation</td>
<td>28,000 rpm</td>
</tr>
<tr>
<td>Bearing</td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>aM2110 series (65W)</td>
</tr>
<tr>
<td>Rear</td>
<td>aM6110 series (85W)</td>
</tr>
<tr>
<td>Tool holder</td>
<td>HSK-A65</td>
</tr>
<tr>
<td>Lubrication</td>
<td>Grease replenishment</td>
</tr>
<tr>
<td>Preload method</td>
<td>Spring method</td>
</tr>
<tr>
<td>Coolant function</td>
<td>Through coolant (7MPa)</td>
</tr>
<tr>
<td>Output</td>
<td>2555.5W (85%)</td>
</tr>
<tr>
<td>Max. torque</td>
<td>150 Nm (95%)</td>
</tr>
</tbody>
</table>

1. Introduction

The recent increased interest in high-speed machine tool spindle technology has led to increased demand for high-speed machine tool spindles to increase production efficiency. For this reason, NSK has developed high-speed, high-power spindle units in addition to the NSK standard spindle series. These spindle units use a constant-pressure preload and a rear bearing engaged with a spiral groove cooling structure to maintain rotational accuracy. Other features include a grease-replenishment unit to prolong spindle life, a quadruple-seal structure to prevent infiltration of coolant, and a back-upbearing constant.

2. Overview

The new high-speed, high-power type spindle in NSK's product lineup represents NSK's advanced technologies and have been developed based on the standard high-speed type that has good value performance. The new spindle (HSK-A65 type) with further improved specifications and a new technology added to the axial seals existing type achieved the world's highest speed of grease replenishment.

3. High-speed Technology

3.1 Constant-pressure preload method

The conventional standard high-speed type applies a position preload method combining a front-bearing inner diameter of 76 mm, angular ball bearing 8010, a rear-bearing inner diameter of 46 mm, and angular ball bearing BR7. This new spindle has the same inner bearing diameter as in the standard high-speed type, combining the dual-row front bearing DT and dual-row rear bearing P7T, and a constant-pressure preload method is used to apply the preload with a coil spring. The inner and outer bearing rings are made of ZIR material, while the outer bearing material is made of ultra-high-pressure resistant components (Table 1).

Fig. 1: High-speed, high-power spindle with automatic grease replenishment

Fig. 2: Bearing dimensions
The rear bearing housing has a bearing sleeve that can slide in the axial direction. The sliding structure allows a given pressure to be applied, and the relative heat expansion of the shaft in the housing is to be absorbed backward during operation (Figure 3).

A constant-pressure preload structure, however, raises the following concerns.

- In the so-called upright position, with the cutter on the downside when the machining tool is inserted, the spindle rigidity decreases because the front bearing (fixed side) preload is reduced due to the spindle’s shaft weight. As a result, increased vibration can have an impact on machining accuracy (Figure 3).

- The new spindle has a through-coolant function. This function is a feature for supplying up to 7.0 MPa of high-pressure coolant to a rotary union, which passes a clamping unit inside the shaft and discharges it from the cutter end. When the high-pressure coolant passes the rotary union, a generated axial load (coolant supply pressure: \(P \times A\) [rotary union inner diameter cross-section area]) is applied in the axial direction when passing the clamping unit. It reduces the front bearing preload (fixed side), thus increasing the vibration affects machining accuracy (Figure 3).

Figure 4 shows the two above-mentioned effects on preload change. This indicates that the preload does not change in various conditions, for the rear bearing, but that it reduces the dependence on conditions, as with the front bearing.

Those concerns must be prevented because spindles are used in different positions, and through-coolant exerts effect in deep hole drilling and other machining processes. To that end, preload must be considered in regard to the axial load generated by the shaft weight and through-coolant. When preload loading is excessive, the load applied onto the bearing is greater and causes premature heat seizure under conditions in which the preload has not been reduced. Therefore, regarding the balance between vibration and bearing preload, various verification tests were conducted to set the optimal preload for the new spindles.

Figure 5 shows a comparison of the spindle vibration before and after the axial load was taken into account. The vibration value standard was set at 1 μm or less. Under the condition in which axial load was not considered, the vibration value exceeded 1 μm at 20 000 rpm, at a horizontal state with through-coolant. Assuming that an operation is carried out in upright position with through-coolant, preload will reduce further, and vibration is expected to increase. In fact, however, by setting an optimal preload with the axial load taken into account, throughout the entire rotation range, the vibration value was 1 μm or less even in upright position with through-coolant.

Figure 6 shows a comparison of respective temperature rises in front bearing. When preload was set with the axial load taken in to account, temperature rise was approximately 3°C higher at 25 000 rpm. Although increased temperature raises a concern about an adverse impact on grease life, it has been confirmed with the endurance test result of continuous operation that service life is not affected when an appropriate grease replenishment interval is considered. Also, difference in temperature rise can be controlled by changing the condition of housing cooling.
3.2 Sleeve-cooling structure

As previously mentioned, the spindle has a structure equipped with a sleeve that can displace the rear bearing part in the axial direction. In most applications, the free-moving rear bearing is smaller in size than the front bearing by one or two ranks. This decreases the bearing clearance, which suppresses the temperature rise, and therefore a cooling mechanism is not added in most cases so as to avoid a complicated structure. Considering the impact that the rear-side thermal deformation of the main shaft has on machining accuracy, it is smaller when compared to the front-side area.

Among the current high-speed main shafts, many types exceed the maximum rotational speed of 20,000 rpm in test data. For example, a rear bearing with a sleeve could exceed 1 or even 1.5 million. Also, types that exceed a sleeve value of 2 million are increasing in number, often requiring an efficient cooling mechanism for the rear bearings.

Specifically, in cases where heat generation is greater in the rear bearing of the high-speed shaft, the following problems are possible:

- Bearing inner temperature rises and lubrication oil viscosity decreases. Heat extraction occurs at sliding contact areas due to insufficient oil film formation.
- Sliding failure occurs due to a reduced clearance in the sliding portion (between the sleeve outer diameter and housing inner diameter) caused by the heat expansion difference between the sleeve and a heat source (i.e., rear bearing) and the housing, which has greater heat capacity and is located away from heat source. Thus, a complicated cooling function produces thermal expansion between the fixed bearing side (front bearing) and the free-moving bearing side (rear bearing), resulting in a tensile load. The load may cause damage to the bearing if it is applied excessively. Or, on the contrary, the released period may generate an abnormal level of noise and vibration.

The structure of the spindle allows for the cooling sleeve on the outer diameter surface of the sliding part to suppress heat generation in the rear bearing (Figure 7), resulting in the following advantages:

- The precision of the direct-cooling mechanism on the bearing part can efficiently cool the free-moving rear bearing, lowering the direct cooling of the bearing sleeve. Therefore, the decreased bearing inner temperature reduces the lubricating film deficiency caused by the decreased oil viscosity at the rolling contact area, guiding the bearing sleeve to move uniformly in the radial direction. This prevents sleeve failure due to clogging due to narrow clearance.
- Shortened oil flow by means of a spiral groove cooling structure forms the uniform cooling of the entire sleeve, thereby preventing cooling-induced distortion. This also prevents the internally engaged bearing from becoming distorted, and as the radial accuracy of the main shaft does not deteriorate.
- Installing an elastic band near both ends of the sliding section prevents cooling oil leakage. For the body, using a rubber material such as an O-ring or a resin material can enhance the damping effect of the pressurized cooling oil and the attenuation property in a high-speed shaft.

Even if there is early fretting, abrasive metallic particles are produced from wear debris due to high-speed conformance between the sliding part materials, and the cooling oil removes this fine wear powder. Therefore, no further fretting failure taking place due to the wear debris playing as an auxiliary agent (in a conventional sliding structure without a cooling mechanism, repeated wear debris plays a role in fretting). As a result, service life is extended as a main shaft and machining performance improves.

3.3 Grease replenishing lubrication

A grease replenishing lubrication method is used for the spindle shaft that has also been used for conventional standard high-speed types, and there is a grease replenishment unit attached (Figure 8).

The grease replenishing lubrication is a lubrication method through which a small amount of grease is discharged by a metering piston of the grease replenishment unit, which is carried by oil pressure through a tube and intermittently supplied to the bearing.

A note of caution in grease replenishment: A high-speed operating bearing replenished with a mass of grease generated heat abnormally because of the increased agitation resistance of grease. Moreover, the service life of grease is reduced due to increased rotational speed and temperature. In the new spindle, as the result value exceeds the operational record value of conventional slow- and high-speed types, the optimal replenishment amount and interval were determined through experiments. Consequently, the replenishment interval for the standard high-speed type was set at 6 hours per shot, and, for the spindle, at 4 hours per shot.

![Fig. 7: Spiral groove cooling structure on bearing sleeve](image1)

![Fig. 8: Grease replenishment unit](image2)

<table>
<thead>
<tr>
<th>Table 2: Replenishment interval at various rotational speeds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Replenishment interval (hr)</td>
</tr>
</tbody>
</table>

Note: Rotational speed (rpm)
3.4 Built-in high-power motor

The shorter of spindle acceleration time will significantly enhance production efficiency. The new spindle now has an integrated high-power motor with a maximum output of 88 kW (interruption rating of 15%). The motor shortened the acceleration time by 41% at 20000 rpm when compared with the standard high-speed type. Incidentally, the acceleration time at 50000 rpm was 5.8 seconds (Figure 9).

4. Spindle Auxiliary Functions

4.1 Seal structure

Machine tool spindles are used under conditions where there are constant exposure to coolant, and high-speed rotating spindles cannot use contact seals. As a result, coolant flows in a spindle, occasionally resulting in a seal failure. In gears lubrication, in particular, the seal effect is not too good as in oil lubrication that uses air supply. To solve this problem, the spindles have a quadruple seal structure that is the same as that used in the standard high-speed types.

Figure 10 shows the quadruple seal structure. The first stage is a casing that has an effect to drain off coolant or chips by rotational centrifugal force so that most of the coolant can be prevented. The second stage is an air seal structure, which prevents coolant infiltration by blowing air from the outer perimeter of the diaphragm. At the third stage, a labyrinth structure was added, which can be used in cases where a contact seal is unusable due to high-speed rotation. An extended distance from the labyrinth mouth to the bearing prevents coolant from entering the bearing. The fourth stage is a seal spacer, where a rubber seal, intended for use as sealing bearings, is plugged into the bearing system. This compact non-contact seal, requiring as wide space in the axial direction, can shorten axial length.

4.2 Tool-unclamping cylinder

The new spindle is equipped with a tool-unclamping cylinder in addition to a tool-chucking mechanism. This simplifies the equipment structure by eliminating the need for a piston cylinder. The hydraulically operated tool-unclamping cylinder is capable of unclamping with the aid of an air hydraulic booster to meet an oil-free requirement. Furthermore, the unclamping cylinder is equipped with a proximity switch to detect the outer control patterns (Figure 11).

5. Afterword

NSK has developed spindles to address market demands, and they have been highly evaluated by those who have used them. The new high-speed high-power spindles are some of the world's top products, and they contribute to improving production efficiency as well as to mitigating environmental impact, equipped with a green sealing lubrication that can further extend service life.

While sharpening our abilities, we will continue to develop new spindles in order to meet market demand.

References

Development of a High-Precision Vertical-Axis Table

Techno Sato
Linear Technology Center

Abstract
Recent technological progress has led to the creation of three-dimensional mechatronics devices. This development requires manufacturing apparatus and inspection equipment, such as positioning tables, to meet ever-higher precision demands. NSK previously developed an ultra-precise positioning table for two-dimensional mechatronics devices and is currently developing a three-dimensional precision positioning table to meet these new requirements. In this paper, this new high-precision vertical-axis table is discussed.

1. Introduction
During the development of a number of different types of industrial machines used for mass production in the demand for higher performances. Moreover, high-precision systems are required, and there is a need for a precise positioning of parts. NSK has been developing a table for which precision positioning is also available in a vertical direction by combining a previously developed ultra-precise positioning table and an externally pressurized air bearing. This paper presents this new high-precision vertical-axis table.

2. Challenges with High Precision
A number of challenges, such as technical problems related to machine components and high costs, have restricted efforts aimed at increasing precision. In addition, various efforts have been made to increase the motion accuracy of moving devices and motors, by reducing rolling element passage vibration in the rolling guide, and increasing preload in the machining of guide rails as well as assembly precision. Toward even greater precision, NSK has focused on developing an ultra-precision positioning table with a non-contact two-dimensional plane guide equipped with an air bearing. However, to expand its related knowledge to the area of three-dimensional applications involving the vertical direction, an ultra-precision positioning table must be used to solve the following challenges:
- Reducing the adverse effects of wear and surface roughness
- Making it compact (low-gravity center) to maintain or even reduce the current size
- Lower the cost

3. Structure and Features of the High-Precision Vertical-Axis Table
Photo 1 shows the new high-precision vertical-axis table, which has the following structure and features.

3.1 Conventional structure
Figure 1 shows the structure of a conventional vertical-axis table. This common structure includes a straight guide bearing placed vertically, which is driven by a central ball screw. The overall height is suppressed by adopting a drive timing belt around a motor. However, because the insufficient belt rigidity and the gap between the engaging gears produce a positioning difference in axial (first leg) and vertical (second leg) direction, this structure is prone to the mentioned toleration.

As for motion straightness, the structure can also provide at least a similar precision to that for the horizontal direction of conventional products.

3.2 New structure
Figure 2 shows the structure of the new vertical-axis table. A wedge mechanism with two types of inclined blocks has been incorporated into the drive part, where lateral motion is converted vertically by means of the rolling guides' inclination in the inclined section. The inclination angle has a retarding effect, enabling smoother motion, with little backlash, while maintaining high rigidity structure.

Three air bearings are positioned around the lifting table to guide the table vertically, and its well-designed structure facilitates transmission of the drive force of the centrally located wedge mechanism to the gravity position vertically. This enables precise positioning through the ideal straight motion in the vertical direction.

3.3 Vertically guiding bearing
Figure 3 shows the structure of the new air bearing. As shown in Figure 4, the externally pressurized air bearing supports the shaft without contact, and it gains leading capability and rigidity by supplying compressed air from an external air source to the small clearance of the bearing through the air-feeding aperture on the bearing. Externally pressurized air bearings are classified according to their air-feeding aperture type. Figure 6 shows different types, and Figure 7 shows a comparison of loading capability. NSK uses an efficient pressurized air-bearing that has a high leading capacity per unit area.

If any return air is not fed or is fed too much, the shaft and bearing make contact, which could result in heat stress. To prevent this, NSK has used a porous graphite material with excellent lubricity as a solid lubricant. Its configuration makes for a highly reliable pneumatic bearing, and yet it is compact and light.
4.2 Straightness repeatability

As shown in Figure 10, an enlarged stroke center portion, a slight difference is found among the three overlaid measurements, was confirmed to follow the same track across the entire stroke range.

3.4 Tare weight cancellation mechanism

A tare weight cancellation mechanism is shown at the bottom of Figure 3. Air bearings have an air chamber at the bottom to accumulate compressed air supplied from outside. The tare weight of a moving body can be structured in a way that allows for cancellation by keeping this internal pressure constant to the level of movable mass. The spatial volume of a cylinder room changes when the movable shaft goes up or down, but the internal pressure can remain constant by means of a precision regulator installed outside.

This can cancel gravitational by tare weight constantly, reducing the load from a feeding mechanism, such as the ball screw or drive motor, and thus the entire structure can become more compact. It can also suppress heat generation, minimizing precision deterioration caused by thermal expansion, which enables higher repeatability even during long hours of operation.

5. Afterword

The high-precision vertical-axis table using a drive with a wedge mechanism and air bearings for vertical guidance has been described here. This combination has allowed for a high motion accuracy that has not been accomplished using conventional rolling methods, and NSK is confident that it will meet demand for ultra-high precision.

We will continue to develop and refine products by meeting specific requirements from the semiconductor manufacturing equipment and inspection equipment sectors where further micronization is anticipated.

Fig. 4 Structure of the externally pressurized air bearing

Fig. 5 Air-feed methods

Fig. 6 Comparison of air-feed method performance

Fig. 7 Pitching

Fig. 8 Yawing

Fig. 9 Straightness

Fig. 10 Straightness repeatability

Toshinori Sato
Ball Bearings with Excellent Sealing Performance for Fan Clutches

Automotive engines require a cooling system, which includes a fan clutch located in the front of the engine. The fan clutch controls the heat balance of the cooling water that circulates in the engine block and radiator. Global demand for automobiles has led to a growing need for fan clutches that can be used under harsh conditions and in dusty or muddy/watery environments. Conventional bearings for fan clutches were equipped with the same seals at both sides to facilitate mounting. In recent years, however, vehicles are being used in such harsh conditions that a mass of dust can adhere to areas around the seal on the atmosphere side. This accelerates seal wear, resulting in abnormal noise generation due to dust or mud water that has permeated into the bearing.

NSK has developed high sealing property bearing seals that are superior in dust and mud water tightness, required of seals on the atmosphere side (Photo 1), as described in this article.

1. Applications and Structure

The new bearing seals are used to support fan clutches (Figure 1), which keep engines running at an optimal temperature and also maintain fuel efficiency. There are two types: one for the atmosphere side to prevent dust and mud water and the other for the oil side to prevent silicon oil. The bearings are driven by an engine accessory belt.

2. Features

- Resistance against dust and mud water
 Figure 2 shows the seal structure, designed with the aim of high sealing performance under harsh conditions. The concept underlying the design was aimed at increasing the number of barriers against sandy dust and mud water by means of installing a slinger and increased seal lips (2-lip \Rightarrow 3-lip) to prevent foreign objects from entering the bearing.

 Figure 3 shows comparative evaluation results of dust resistance and mud water resistance between the new products and conventional products. The results confirm that the new products are about 30 times more resistant to dust and about 8 times more resistant to water.

3. Conclusion

We are confident that incorporating high sealing performance seals in the bearings for fan clutches extends the bearing service life, improves fan clutch reliability, and ultimately leads to more reliable vehicles.
New Ball Bearing with a Retainer Plate for Automobile Transmissions

A trend to improve fuel efficiency in automobiles has led to continuous demand for higher mechanical efficiency and more compact, lightweight transmission systems (TMs). NSK developed and introduced ball bearings with a retainer plate that allows for an overall shorter TM (Photo 1). In recent years, demand for TMs has been growing, especially in newly developing countries. However, with conventional plates, automated mounting onto the bearing outer ring is difficult. What arose was the strong possibility that supply would barely be able to keep up with demand. NSK’s new ball bearing with a retainer plate not only increases productivity by automating plate mounting and due to plate load capacity; they also make it possible to meet the demand for diversified plate geometry. The structure and features of the bearing are described here.

1. Structure and Specifications

The product consists of two parts: a bearing that has an outer ring with stepping (Figure 1 (a)) and a new retainer plate with a bore that is outfitted with slotting (Figure 1 (b)). When mounting the plate onto the outer ring, tab is formed by a press machine. The plate can be automatically mounted onto the outer ring and also has a non-separable structure (Figure 1 (c)).

2. Features

1) Improvement of productivity by automated mounting
 Due to the structure of conventional products, automated mounting was difficult when using a specially shaped snap ring to secure the plate to the outer ring. The new product allows for automated mounting, owing to its structure, while forming tab by press machine.

2) Improvement of plate load capacity
 The higher the engine torque, the heavier the bearing load. As a result, the plate tightening load increases, which boosts the stress applied to the outer ring stepping. In conventional products equipped with a snap ring groove, increasing the fillet radius is difficult. The new product can be outfitted with an enlarged corner of an outer ring stepping by eliminating a snap ring groove. Thus, with reduced stress, the bearing can withstand greater tightening load (Figure 2).

3) Structure accommodating various plate geometries
 In view of increasing demand for more compact TMs and their diversified layout, some conventional products with a plate fixing snap ring may not exhibit compatibility between plate strength and bearing mountability. The product accommodates various plate geometries by using press die to place the plate tab at the optimal location.

3. Applications and Potential Results

The new bearings are intended mainly for use as the shaft support of automotive transmission, especially manual transmission (MT) and dual clutch transmission (DCT). The new product has achieved a more compact, lightweight TM by shortening the TM’s overall length by the thickness of the retainer plate (approximately 4 mm). Moreover, a reduction of TM vibration caused by the snap ring, by eliminating axial gap, is expected (Figure 3).

4. Conclusion

By enhancing conventional ball bearings with a retainer plate, the new ball bearing with a retainer plate adequately meets the increasing demand in the growing TM market. Continuous efforts are needed to make more compact, lightweight TM support bearings, for which demand is increasing in Europe and China.
The World’s Lightest* Electric Power Steering System

A strong international movement is underway to control CO₂ emissions and strengthen global environmental conservation, and European countries have launched stricter exhaust gas regulations such as Euro6. Against this backdrop, the role of automotive electric power steering (EPS) is becoming increasingly important.

While developing its EPS systems, NSK has focused on improving environmental performance, not only for safety but also for making automobiles lighter, more compact, and more fuel-efficient. NSK recently developed the world’s lightest* EPS system equipped with a column-type tilt mechanism for adjusting the steering vertical angle. In this article, we describe the system, which enhances both safety and operational sustainability.

1. Features

The weight of the EPS system (Figure 1) was reduced by 13% compared to that of a conventional EPS by using more compact components in the gear box: a torque sensor, reduction gear, as well as the gear box itself. Moreover, safety has been enhanced as a result of the initial test of the torque sensor's monitoring function, which enables the EPS to continue operating even when battery supply capacity is low during an idle reduction.

2. Advantages of the New EPS

(1) Weight reduction (Figure 2)

- Torque sensor: Mechanical components were downsized by optimizing the design of the sensor mechanism structure. However, sensitivity, as a trade-off, tended to decrease. Therefore, the compatibility of downsizing and necessary sensitivity was realized by optimizing the mechanical structure and redesigning the electromagnetic circuit. Consequently, functionality was improved and weight was reduced by 24% compared to that of a conventional product, following ECU interface and sensor assembly process steps.
- Reduction gear: Surface pressure and other contact conditions were analyzed when the contact area on the gear teeth moves according to the meshing that changes during the manufacturing process (Figure 3). Contact stress was reduced by optimizing the tooth profile, and the gear diameter was reduced by implementing an NSK design method. The weight could therefore be decreased by 32% compared to that of a conventional component.

<table>
<thead>
<tr>
<th>Part</th>
<th>Weight reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque sensor</td>
<td>▲ 19%</td>
</tr>
<tr>
<td>Shaft</td>
<td>▲ 19%</td>
</tr>
<tr>
<td>Coll</td>
<td>▲ 49%</td>
</tr>
<tr>
<td>Sleeve</td>
<td>▲ 40%</td>
</tr>
<tr>
<td>Reduction gear</td>
<td>▲ 35%</td>
</tr>
<tr>
<td>Gear box</td>
<td>▲ 23%</td>
</tr>
<tr>
<td>EPS: Total</td>
<td>▲ 13%</td>
</tr>
</tbody>
</table>

3. Application

The product can be utilized in compact or midsize cars, driven in regions around the world, as a column-type EPS.

4. Conclusion

Due to its lightness and better utilization for an idle reduction feature, NSK’s new ESP system, the world’s lightest*, equipped with a column-type tilt mechanism, allows for energy and resource savings, while its new initial testing function contributes to both safety and security.

• Gear box: Controlling the blowhole in die casting increased both strength and stretch, thereby reducing wall thickness while also retaining rigidity. To avoid deteriorated metal flow, possibly the result of the thinned wall, metal flow/solidification analysis (Figure 4) was conducted in addition to conventional structure analysis. This was done to increase casting quality and optimize the shape of the thin wall, and an overall 23% reduction in weight, compared to that of a conventional component, was achieved.

(2) Improving operational continuity during an idle reduction

A battery’s power feeding capability is low during an idle reduction, as the generation of electricity or charge from the engine stops. To address this, the drive voltage of the torque sensor was lowered so that the EPS would continue to operate, even when battery power feeding decreased (Figure 5).

(3) Enhancing safety

Until recently, torque sensors in EPS systems have been used to monitor functionality. NSK has made it possible to perform the initial test to monitor the torque sensor’s monitoring function and check if it is operating normally (Figure 6). This has enhanced the safety of the EPS system.

*According to NSK’s research
spaceaCRYO: New High-Performance Ceramic Ball Bearings for Liquefied Gas Pumps

Cargo depots and tankers have pumps for receiving or transporting liquefied gas. In recent years, demand has been growing for liquefied natural gas and larger plants, leading to the need for bearings with longer service life in pumps for stable operations. Besides longer life, these bearings must meet a new requirement for electric corrosion resistance because inverter-controlled motors are increasingly being used to boost pump efficiency. To that end, a material for the rolling element (balls) of the bearing, ceramics are preferred to conventional stainless steel due to their excellent wear resistance and insulation. However, conventional ceramic materials (silicon nitrides) have little temperature expansion, just one-fourth of that of the inner/outer rings (stainless steel), which may cause fluctuation in bearing clearance, depending on the degree to which the temperature changes. Therefore, bearings had to be chosen according to the initial clearance for each liquefied gas at different temperatures.

1. Construction, Structure, and Specifications

This article discusses NSK’s new high-performance ceramic ball bearings for liquefied gas pumps, spaceaCRYO (Photo 1), which, with only one clearance, can be used for all types of liquefied gases.

![Photo 1 spaceaCRYO: new high-performance ceramic ball bearings for liquefied gas pumps](image)

Figure 1 shows the configuration of the new bearings. The outer and inner rings are made of stainless steel whereas the new ceramic material with excellent wear resistance and insulation is used for the rolling element (balls), and a special resin material with excellent self-lubrication capability is used for the cage. Different from conventional ceramic material (silicon nitrides), the new ceramics used for the rolling element have a similar linear expansion coefficient to that of the inner/outer ring materials, and there is little temperature-induced fluctuation in the internal clearance.

![Fig. 1 Bearing configuration](image)

2. Features

(1) Just one bearing type can be used for each kind of liquefied gas, as the fluctuation in the bearing internal clearance is minor in a wide temperature range. Figure 2 shows the relationship between temperature and internal clearance.

(2) The maintenance period can be extended, as its wear resistance is superior to that of stainless-steel ball bearings. Figures 3 and 4 show the results of a rotation test in liquid nitrogen and a four-ball wear test in water, respectively.

(3) Damage due to electric corrosion can be avoided, as the balls are made of a ceramic insulating material. Table 1 shows the effectiveness of the developed products as related to (1) to (3) above.

3. Applications

The new bearings can be used not only in various pumps for liquefied gases, including liquefied natural gas, but can also be used as a means of improving pump reliability.

4. Conclusion

Ahead of other manufactures, NSK has developed various bearings for liquefied gas pumps and attained a high level of trust in the market. We remain committed to furthering stable operations and the extension of the maintenance period of liquefied gas pumps.
Spherical Roller Bearings Featuring High Reliability and Excellent Sealing Performance for Conveyor Pulleys in Mines

The downtime of mine conveyors that are a few kilometers to 20 km in length has a significant impact on productivity, whether this is due to failure or maintenance work. Therefore, these facilities must be reliable enough to sustain stable operations for 24 hours a day throughout the year, even when under harsh conditions and exposed to dust.

In these conveyor pulleys, spherical roller bearings with a high load capacity are generally used to absorb axial deflection. There are two types of spherical roller bearings: the open type (without a seal) and the closed type (with a seal). The first is more common; though, it can cause premature bearing damage due to foreign object infiltration, whereas the second type must deal with improper mounting because of the need for seal space to maximize seal performance and its inability to facilitate the measurement of clearance when mounting bearings onto a facility. To solve these problems, NSK developed spherical roller bearings featuring high reliability and excellent sealing performance, which are the same size as conventional bearings, demonstrate sufficient sealing performance, and achieve a long service life (Photo 1).

1. Features

(1) Full compatibility with conventional bearings (open type)

The new products are in compliance with an ISO dimension and can replace conventional bearings of the same size (Figure 1).

(2) Extended life materials

Load capacity has improved and the internal bearing design has become more compact as a result of using an NSK material in the inner and outer rings and applying a special heat treatment process. This has brought load capacity equal to or even greater than that of conventional products while ensuring seal space, whereas the size is the same. In addition, our field test of conventional products and the newly developed bearings revealed that only the former had flaking and the latter was not damaged. Figure 2 shows a comparison of service lives, including the remaining life of the developed product.

(3) A high sealing performance technology

Using a seal with a garter spring and time-proven measures against foreign matter achieved a high sealing effect. Figure 3 shows a comparison of foreign matter found inside the internal bearing after performing the same field test, as described in (2) above.

(4) A bolt-fastening type seal holder

Flaking or heat seizure damage caused by improper mounting clearance can be prevented since the clearance measurement can be performed by removing the seal when mounting the bearing.

2. Specifications

Figure 4 shows the specifications of the new spherical roller bearings.

3. Applications

The new bearings are suitable for use in mine conveyor pulleys where they are needed for sustaining stable operation under harsh conditions and are exposed to dust. The bearings are available in the sizes listed in Tables 1 and 2.

4. Conclusion

The new bearings will boost mining operation productivity by extending service life by more than four times that of conventional products, even under harsh conditions.
Ball Bearings for Ultra-High-Speed Rotary Motors

Amid a recent trend for more compact and lighter products in the domestic vacuum cleaner sector, air suction fans have been downsized to the extent that the current diameter is as small as one-third of a conventional product. Fan motors are required to rotate faster than ever to empower these small-diameter fans so that they maintain sufficient suction power. Therefore, their bearings must meet a high-speed rotation requirement. Consequently, their specifications for d_{av} value, i.e., a high-speed rotation property (rolling element pitch diameter [mm] x rotation number [rpm]), need to ensure an operation in the million range, which is 1.6 times more than that of a conventional product (Figure 1).

To meet such high-speed specifications for bearings, NSK has released ball bearings for ultra-high-speed rotary motors (Photo 1), which achieve a d_{av} value that goes beyond the million range. These bearings incorporate optimally designed dedicated cages made of a high-strength material and are described in this article.

1. Construction, Structure, and Specifications

In conventional designs, high-speed rotation-induced centrifugal force deforms cages, resulting in wear or rupture caused by interference with other components (Photo 3).

The cages of the new bearings are made of a high-strength material that was developed with an optimized design based on FEM analysis. As a result, they meet the operational requirement of the million range of the d_{av} value (Figure 2).

2. Features

The high rigidity cages made of a high-strength material with optimized geometry allow for the bearings to endure an operation in the million range of the d_{av} value (Photo 2).

3. Applications

To achieve ultra-high speed rotation, the developed products are suitable for use in the fan motors of compact, lightweight vacuum cleaners with high suction power as well as in high-speed rotary motors that operate in the million range of the d_{av} value.

4. Conclusion

We have introduced ball bearings for ultra-high-speed rotary motors, which were developed for use in motors of vacuum cleaners. We remain committed to developing products to meet emerging trends in the areas of home electric appliances for better comfort, health, and energy savings.
ROBUSTSHOT Bearings: Direct Lubrication Angular Contact Ball Bearings for Machine Tool Spindles

In recent years, there has been growing demand for high-speed main spindles for machine tools as manufacturers work to improve machining efficiency. Another growing need for increasing efficiency in productivity is to support 8-axis machines, which are capable of performing complex configuration workpieces without producing a parting change. For the 8-axis machine tool spindles, which spindle and back center, demand is rising to short the total length of the spindle so as to meet the requirement for conserving space by shortening the bearing radius, as well as the power saving extended requirement for reducing running inertia and weight.

To meet these needs, NSK has developed a series of ROBUSTSHOT direct lubrication angular contact ball bearings, which are superior to conventional bearings for machine tool spindles in terms of high-speed rotation, low load generation, and high rigidity (Photo 1), as described in this article.

1. Bearing Specifications

ROBUSTSHOT bearings have a circumferential oil groove around the outer ring and communicating oil holes around the groove in the axial direction. These specifications are common to all ROBUST series bearings with an inner diameter of φ100 mm to φ130 mm (Figure 1).

2. Features

1. **More reliable lubrication**

 - In conventional oil-lubrication-fed main spindles, the lubricating oil supply is interrupted by the high-speed rotation of the inner ring or outer ring. In contrast, ROBUSTSHOT bearings facilitate a stable high-speed operation with improved lubricating ability, owing to the direct lubricating oil supply from the outer ring (Figure 2).

2. **Downsizing of the spindle**

 - A lubrication spacer, previously indispensable for oil face feeding lubrication-type bearings, is no longer used. Therefore, the width of the spacer can be reduced. This also shortens the main spindle length (Figure 3), which in turn decreases its turning space and thereby ensures a larger machining area. Furthermore, the shortened main spindle length also leads to weight reduction and higher critical speed.

3. Applications

The new ROBUSTSHOT bearings can be used for machine tool main spindles that operate in a high-speed range, in which oil lubrication is applied and the previous ROBUST series can be replaced.

4. Conclusion

Compared to conventional oil face feeding lubrication-type bearings, the new ROBUSTSHOT bearings further improve lubrication performance in the high-speed range and also allow for downsizing of the main spindle. Consequently, NSK is confident that using these bearings will contribute to a higher level of productivity.
Ultra-Large Ball Screws

Although ball screws are versatile in their use, especially when it comes to injection molding machines and press machines, the drive method of each shaft has been shifting from hydraulic to electric using ball screws and rotary motors due to the improvement and stabilization of product quality, the optimization of productivity, and other reasons. However, in the injection molding of large products, including automobile bumpers and instrument panels, where very heavy loads are applied onto individual drive shafts, ball screws with a conventional load capacity cannot ensure sufficient product life. Thus, drive methods, such as the hydraulic drive method and electrohydraulic hybrid method*, have been used up to recently.

NSK has recently developed ultra-large ball screws (Photo 1) with far greater load capacity than that of ball screws for high load drive, which are applicable to a range where the hydraulic or hybrid method are used. Switching from a hydraulic system to an electric system leads to these advantages:

- Improved accuracy for molded pieces
- Reduction in the defective rate of the molded pieces by improving controllability and responsiveness
- High-functionality molding and an expanded application range
- Reduced running costs (the electricity cost is half to one-third lower than that for a hydraulic system)
- Improved safety and environment at production sites

1. Features

By using NSK’s originally developed nut thread grinder and high precision measurement techniques, the overall grindable nut length has been extended, resulting in the following advantages.

(1) High capacity
Service life is at least 2.8 times longer than that of a conventional large ball screw (Figure 1).

(2) Load bearing
Permissible axial load is at least 1.3 times more than that of a conventional large ball screw (Figure 1). A single shaft can bear a maximum of 200 tons of load.

(3) Full variations
Optimal lead is selectable for each shaft diameter.

2. Specifications

- Table 1 shows specifications of general models.
- Table 2 provides the lineup (combination of shaft diameter and lead).
- The ball holding piece NSK S1 is used to prevent the contention of balls.
- The HTF-SRR method for high-speed specifications can be used in cases where the permissible rotating speed is exceeded (permissible d ∙ n value: 100 000).
- The load bearing option with an improved permissible axial load is also available.
- Tolerance class - JIS CT7 class
- Axial clearance: 0.050 mm or less

3. Applications

The new products are suitable for use in machines for electric injection molding, servo press, broaching, die-casting and others, which have to meet requirements for a high capacity and load bearing.

4. Conclusion

As grinding ball screws, the new ultra-large ball screws boast the world’s top class load capability. By using them with tandem nuts (a method for boosting load capacity by connecting nuts) or using multiple ball screws, it is now possible to replace them with existing hydraulic or hybrid systems in order to support a high-load range operation. NSK will continue to develop and release products that are needed for facilitating the electrification of various types of equipment.

Reference

1) NSK catalog, “Ultra-large ball screws with the world’s top class load capacity,” CAT. NO. JSP-160215.

![Photo 1 New ultra-large ball screw](image)

*Indicates cases where both hydraulic and electric systems are used in the respective shafts of injection machines (e.g., injection shaft, mold clamping shaft, and ejector shaft), for there is no clear definition of a hybrid system. This includes, for example, cases in which the injection shaft is hydraulic but the clamping shaft is electric.