11. 歯車の荷重計算

11.1 平歯車、はすば歯車、やまば歯車

にかかる力の計算

歯車と転がり軸受の二つの機械要素の間には、非常に密接な関係があり、多くの機械に使用されている歯車装置には、軸受がほとんど使われている。これらの歯車装置に使用する軸受の定格寿命計算、軸受の選定は、歯車のかみあい点における力が基本となる。

歯車のかみあい点における力は、次のように計算される。

平歯車:

\[P_1 = P_2 = \frac{9550000H}{n_1 \left(\frac{d_1}{2} \right)} = \frac{9550000H}{n_2 \left(\frac{d_2}{2} \right)} \]

……………………………………… (N)

\[= \frac{974000H}{n_1 \left(\frac{d_1}{2} \right)} = \frac{974000H}{n_2 \left(\frac{d_2}{2} \right)} \] (kgf)

\[S_1 = S_2 = \frac{P_1 \tan \alpha \cos \beta}{n} \] (N)

ここで、

\[P: \text{接線力 (N), (kgf)} \]

\[S: \text{分離力 (N), (kgf)} \]

\[T: \text{スラスト (N), (kgf)} \]

\[H: \text{伝動動力 (kw)} \]

\[n: \text{回転数 (min}^{-1}) \]

\[d_1: \text{ピッチ径 (mm)} \]

\[\alpha: \text{歯車圧力角} \]

\[\alpha_n: \text{歯直角圧力角} \]

\[\beta: \text{ねじれ角} \]

添字 1: 駆動歯車のときを示す。

添字 2: 被動歯車のときを示す。

はすば歯車:

\[P_1 = P_2 = \frac{9550000H}{n_1 \left(\frac{d_1}{2} \right)} = \frac{9550000H}{n_2 \left(\frac{d_2}{2} \right)} \]

……………………………………… (N)

\[= \frac{974000H}{n_1 \left(\frac{d_1}{2} \right)} = \frac{974000H}{n_2 \left(\frac{d_2}{2} \right)} \] (kgf)

\[S_1 = S_2 = \frac{P_1 \tan \alpha \cos \beta}{n} \]

\[T_1 = T_2 = P_1 \tan \beta \]

やまば歯車の場合は、はすば歯車におけるスラストが互に打ち消し合うので接線力、分離力のみが働く。

接線力、分離力、スラストの力の方向は、図1及び図2のようになる。
はすば歯車のスラストの方向については、歯車の回転方向、歯のねじれ方向及び駆動するか、駆動されるかによって、いろいろの場合があり、それぞれの力の方向は、次のようにになる。

軸受にかかる荷重は、次のようにして求める。

接線力:

接線力:

接線力:

接線力:

接線力:

合成ラジアル荷重:

合成ラジアル荷重:
11.2 すぐばかさ歯車にかかる力の計算

すぐばかさ歯車のかみあい点における力は、次のように計算される。

\[
P_1 = \frac{P_2}{\frac{D_m}{2}} = \frac{P_2}{\frac{d_p}{2}}
\]

…………………(N)

\[
= \frac{974,000}{9} = \frac{974,000}{9} \quad \text{(kgf)}
\]

ただし、\(D_m = d_o - w \sin \delta\)
\(D_m = d_o - w \sin \delta\)

\(S_1 = P_1 \tan \alpha \cos \delta\)
\(S_2 = P_2 \tan \alpha \cos \delta\)

\(T_1 = P_1 \tan \alpha \sin \delta\)
\(T_2 = P_2 \tan \alpha \sin \delta\)

ここで、\(D_m\)：平均ピッチ径 (mm)
\(d_o\)：ピッチ径 (mm)
\(w\)：歯幅 (ピッチ母線長さ) (mm)
\(\alpha\)：歯直角圧力角
\(\delta\)：ピッチ円すい角

一般には \(\delta_1 + \delta_2 = 90^\circ\) が多い。このとき \(S_1\) と \(T_1\) (あるいは \(S_2\) と \(T_2\)) とは大きさが等しく方向が反対である。

\(\delta\) に対する \(S/P\) 及び \(T/P\) を図 3 に示す。

軸受にかかる荷重は、次のようにして求めることができるとобраЧく。歯車の荷重計算

<table>
<thead>
<tr>
<th>荷重の区分</th>
<th>軸受 A</th>
<th>軸受 B</th>
<th>軸受 C</th>
<th>軸受 D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ラジアル荷重</td>
<td>(P)により</td>
<td>(P_A = \frac{a+b}{a} - P_1)</td>
<td>(P_B = \frac{a+b}{a} + P_1)</td>
<td>(P_C = \frac{a+b}{a} - P_1)</td>
</tr>
<tr>
<td>(S)により</td>
<td>(S_A = \frac{b}{a} - S_1)</td>
<td>(S_B = \frac{b}{a} + S_1)</td>
<td>(S_C = \frac{b}{a} - S_1)</td>
<td>(S_D = \frac{b}{a} + S_1)</td>
</tr>
<tr>
<td>(T)により</td>
<td>(U_A = \frac{a+b}{a} - T_1)</td>
<td>(U_B = \frac{a+b}{a} + T_1)</td>
<td>(U_C = \frac{a+b}{a} - T_1)</td>
<td>(U_D = \frac{a+b}{a} + T_1)</td>
</tr>
<tr>
<td>合成ラジアル荷重</td>
<td>(F_A = \sqrt{P_A^2 + S_A^2 + U_A^2})</td>
<td>(F_B = \sqrt{P_B^2 + S_B^2 + U_B^2})</td>
<td>(F_C = \sqrt{P_C^2 + S_C^2 + U_C^2})</td>
<td>(F_D = \sqrt{P_D^2 + S_D^2 + U_D^2})</td>
</tr>
<tr>
<td>アキシャル荷重</td>
<td>(F_1 = T_1)</td>
<td>(F_1 = T_1)</td>
<td>(F_1 = T_1)</td>
<td>(F_1 = T_1)</td>
</tr>
</tbody>
</table>

力の方向は図 2 に対して示したものである。
11.3 まがりばかさ歯車にかかる力の計算

まがりばかさ歯車の場合、回転方向と歯のねじれ方向によって、かみ合い点における力の大きさと方向が変化する。

回転方向は歯車に対し円すいの頂点と反対側から見て、時計回り、反時計回りに区別する（図1参照）。歯のねじれ方向は図2のとおりに区別する。

かみ合い点における力は、次のように計算される。

\[P_1 = P_2 = \frac{9550000H}{n_1 \left(\frac{D_m}{2} \right)} \]

\[= \frac{974000H}{n_1 \left(\frac{D_m}{2} \right)} \] (kgf)

ここで、
- \(\alpha_n \)：歯直角圧力角
- \(\beta \)：ねじれ角
- \(\delta \)：ピッチ円すい角
- \(w \)：歯幅（mm）
- \(D_m \)：平均ピッチ径（mm）
- \(d \)：ピッチ径（mm）

ただし、
- \(D_m = d - w \sin \delta_1 \)
- \(d = D_m - w \sin \delta_2 \)

分離力 \(S \)、スラスト \(T \) は回転方向及び歯のねじれ方向によって、次のようになる。

（1）右ねじれ時計回り、又は左ねじれ反時計回り

駆動歯車
分離力
\[S_i = \frac{P}{\cos \beta} (\tan \alpha_n \cos \delta_1 - \sin \beta \sin \delta_1) \]

スラスト
\[T_i = \frac{P}{\cos \beta} (\tan \alpha_n \sin \delta_1 + \sin \beta \cos \delta_1) \]

被動歯車
分離力
\[S_i = \frac{P}{\cos \beta} (\tan \alpha_n \cos \delta_1 + \sin \beta \sin \delta_1) \]

スラスト
\[T_i = \frac{P}{\cos \beta} (\tan \alpha_n \sin \delta_1 - \sin \beta \cos \delta_1) \]

（2）右ねじれ反時計回り、又は左ねじれ時計回り

駆動歯車
分離力
\[S_i = \frac{P}{\cos \beta} (\tan \alpha_n \sin \delta_1 + \sin \beta \cos \delta_1) \]

スラスト
\[T_i = \frac{P}{\cos \beta} (\tan \alpha_n \cos \delta_1 - \sin \beta \sin \delta_1) \]

被動歯車
分離力
\[S_i = \frac{P}{\cos \beta} (\tan \alpha_n \sin \delta_1 - \sin \beta \cos \delta_1) \]

スラスト
\[T_i = \frac{P}{\cos \beta} (\tan \alpha_n \cos \delta_1 + \sin \beta \sin \delta_1) \]

計算結果が正（プラス）のときは力は歯車を引き離す方向にかかることを示し、負（マイナス）のときは歯車を引き寄せる方向にかかることを示す。

一般には、\(\delta_1 + \delta_2 = 90^\circ \) が多い。このとき \(T_i \) と \(S_i \) （あるいは \(S_i \) と \(T_i \) ）とは大きさが等しく方向が反対である。

軸受にかかる荷重は、11.2 すぐばかさ歯車にかかる力の計算 同じ方法で求めることができると。
11.4 ハイポイドギヤにかかる力の計算

ハイポイドギヤのかみあい点における力は、次のように計算される。

\[P_1 = \frac{9550 \times 10^3 H}{n_1 \left(\frac{D_m}{2} \right)} = \frac{\cos \beta_i}{\cos \beta_2} P_2 \quad \text{…… (N)} \]

\[P_2 = \frac{974 \times 10^3 H}{n_2 \left(\frac{D_m}{2} \right)} = \frac{\cos \beta_1}{\cos \beta_2} P_1 \quad \text{…… (kgf)} \]

ただし
\[D_{m1} = D_m \frac{z_1}{z_2} \frac{\cos \beta_2}{\cos \beta_1} \]
\[D_{m2} = D_m - w \sin \delta \]

ここで、
\[\alpha_n : \text{歯直角圧力角} \]
\[\beta : \text{ねじれ角} \]
\[\delta : \text{ピッチ円すい角} \]
\[w : \text{幅（mm）} \]
\[D_m : \text{平均ピッチ径（mm）} \]
\[d : \text{ピッチ径（mm）} \]
\[z : \text{歯数} \]

スラスト
\[T_s = \frac{P_1}{\cos \beta_1} (\tan \alpha_n \sin \delta - \sin \beta_1 \cos \delta_1) \]

被動歯車
分離力
\[S_i = \frac{P_1}{\cos \beta_1} (\tan \alpha_n \cos \delta_1 - \sin \beta_1 \sin \delta_1) \]

スラスト
\[T_s = \frac{P_1}{\cos \beta_1} (\tan \alpha_n \sin \delta_1 + \sin \beta_1 \cos \delta_1) \]

（2）右ねじれ反時計回り、又は左ねじれ時計回り

駆動歯車
分離力
\[S_i = \frac{P_1}{\cos \beta_1} (\tan \alpha_n \cos \delta_1 - \sin \beta_1 \sin \delta_1) \]

スラスト
\[T_s = \frac{P_1}{\cos \beta_1} (\tan \alpha_n \sin \delta_1 + \sin \beta_1 \cos \delta_1) \]

被動歯車
分離力
\[S_i = \frac{P_1}{\cos \beta_1} (\tan \alpha_n \cos \delta_2 + \sin \beta_2 \sin \delta_2) \]

スラスト
\[T_s = \frac{P_1}{\cos \beta_1} (\tan \alpha_n \sin \delta_2 - \sin \beta_2 \cos \delta_2) \]

計算結果が正（プラス）のときには、力は歯車を引き離す方向にかかることを示し、負（マイナス）のときには、歯車を引き寄せる方向にかかることを示す。

なお、回転方向及び歯のねじれ方向については、11.3 まがりばかさ歯車にかかる力の計算と同様である。

軸受にかかる荷重は、11.2 すくばかさ歯車にかかる力の計算と同じ方法で求めることができる。
分離力 S 及びスラスト T の概略値並びに方向を求めるための計算図表を、次に示す。

【利用の仕方】
分離力 S の求め方について示す。スラスト T も全く同様にして求まる。
1．図の左の縦尺の上に歯直角圧力角 α_n の値を探る。
2．次に、ピッチ円すい角 δ とねじれ角 β との交点を求める。2点のうち回転方向及び歯のねじれ方向により $\beta=0$ の線より上方か下方の1点が決定される。
3．上の2点を結ぶ直線を引き右側の縦尺を切る点を読む。この読みが接線力 P 対する分離力 S の割合を百分化にて与えるものである。

歯車の荷重計算
ウォームギヤの力の計算
ウォームギヤは食違い軸歯車の一種であり、小さい容積で大きい減速比が容易に得られる。このウォームギヤのかみあい点における力は、表1に示すように計算される。
なお、表1における記号は、次のとおりである。

\[i: \text{歯数比} \quad i = \frac{Z_2}{Z_1} \]

\[\eta: \text{ウォームギヤの効率} \quad \eta = \frac{1}{\tan \frac{\gamma}{2}} \]

\[\gamma: \text{進み角} \quad \gamma = \tan^{-1} \frac{d_2}{d_1} \]

\[\psi: \text{摩擦角} \quad \psi = \tan^{-1} \frac{V_R}{V_a} \]

滑り速度 \(V_a \) が 0.2 m/s 以下の場合には \(\psi = 8\% \)、\(V_a \) が 6 m/s を超えるときは \(\psi = 1\% \) を用いる。

\[\alpha_n: \text{歯直角圧力角} \]

\[\alpha_a: \text{軸平面圧力角} \]

\[Z_w: \text{条数（ウォームの歯数)} \]

\[Z_2: \text{ウォームホイールの歯数} \]

添字1: ワーム（駆動歯車）のとき
添字2: ワームホイール（被動歯車）のとき

ウォームギヤでは、ウォームのねじれ方向及び回転方向によって、かみあい点に作用する力の方向は、図2.1〜図2.4の4通りの場合がある。

軸受にかかる荷重は、ウォームギヤのかみあい点におけるこれらの各力の大きさと方向からウォームギヤにかかる力の計算の表1と同様な方法で求めることができる。

表1

<table>
<thead>
<tr>
<th>力</th>
<th>ウォーム</th>
<th>ウォームホイール</th>
</tr>
</thead>
<tbody>
<tr>
<td>接線力</td>
<td>(\frac{9550000H}{n_1 \left(\frac{d_1}{2} \right)})</td>
<td>(\frac{955000H}{n_1 \left(\frac{d_1}{2} \right)})</td>
</tr>
<tr>
<td></td>
<td>(N)</td>
<td>(N)</td>
</tr>
<tr>
<td></td>
<td>(\frac{974000H}{n_1 \left(\frac{d_1}{2} \right)})</td>
<td>(\frac{974000H}{n_1 \left(\frac{d_1}{2} \right)})</td>
</tr>
<tr>
<td></td>
<td>(kgf)</td>
<td>(kgf)</td>
</tr>
<tr>
<td>スラスト</td>
<td>(\frac{9550000H}{n_1 \left(\frac{d_1}{2} \right)})</td>
<td>(\frac{9550000H}{n_1 \left(\frac{d_1}{2} \right)})</td>
</tr>
<tr>
<td></td>
<td>(\frac{974000H}{n_1 \left(\frac{d_1}{2} \right)})</td>
<td>(\frac{974000H}{n_1 \left(\frac{d_1}{2} \right)})</td>
</tr>
<tr>
<td></td>
<td>(N)</td>
<td>(N)</td>
</tr>
<tr>
<td></td>
<td>(\frac{9550000H}{n_1 \left(\frac{d_1}{2} \right)})</td>
<td>(\frac{9550000H}{n_1 \left(\frac{d_1}{2} \right)})</td>
</tr>
</tbody>
</table>

分離力

\[\frac{P_1 \tan \alpha_n \sin (\gamma + \psi)}{\tan (\gamma + \psi)} \]

(UNIT: N, kgf)